1) precision surface grinding
精密平面磨削
1.
Experimental results on how the grinding parameters affect the grinding force ratio and specific grinding energy as well as surface roughness on precision surface grinding of nanostructured WC/12Co(n-WC/12Co) coatings are presented.
本文就磨削参数对纳米结构W C/12Co(n-W C/12Co)涂层卧矩台精密平面磨削的磨削力分力比、比磨削能和磨削表面粗糙度的影响规律进行了试验研究,结合n-W C/12Co涂层精密平面磨削后的表面/亚表面形貌的SEM观察分析,揭示了n-W C/12Co涂层精密磨削的材料去除机理。
2) super-precision grinding
超精密平面磨削
1.
A new super-precision grinding micro-drive unit is introduced in this paper The static and the dynamic characteristics of the unit and the control method are also studied Experiments indicate that the repetitive accuracy of the micro-drive unit is 0 05μm and its movement resolution is 10nm.
介绍了一种用于超精密平面磨削的新型微量进给装置并对其静、动态特性及控制方法进行了研究。
3) ultraprecision mirror grinding
超精密镜面磨削
1.
The passivation layer makes a very important part in the ultraprecision mirror grinding with ELID method.
建立了ELID磨削系统的电解反应回路等效模型,提出用极间电流表征金属结合剂砂轮表面的钝化膜状态,分析了钝化膜在ELID超精密镜面磨削电解预修锐阶段、在线电解修整动态磨削阶段和光磨阶段的状态变化。
4) precision mirror surface grinding
精密镜面磨削
1.
In order to find a new way to machine the material of stainless steel precisionly, using a new kind of technology-electrolytic in-process dressing precision mirror surface grinding, we realized precision mirror surface grinding of HR-1 anti-hydrogenation stainless steel.
为了探索不锈钢材料精密加工的新途径,采用在线电解修整精密镜面磨削技术,对HR-1抗氢不锈钢 进行了精密磨削实验,并对不锈钢的磨削机理进行了分析。
2.
This article introduces precision mirror surface grinding of ceramic coating using metal bond diamond grinding wheel with electrolytic in process dressing(ELID) technology.
本文引入金属基超硬磨料砂轮在线电解修整 (ELID)技术 ,对陶瓷喷涂层进行精密镜面磨削的实验研究。
5) ELID precision mirror surface grinding
ELID精密镜面磨削
1.
The analysis of power supply for the system of ELID precision mirror surface grinding;
ELID精密镜面磨削系统电源的使用分析
6) Accurate surface grinding
高精度平面磨削
补充资料:代替磨削的经济首选--车削和铣削
硬车削越来越成为代替磨削的经济选择
杜塞尔多夫Sandvik股份有限公司的技术经理Klaus Christoffel博士认为:采用可以调节几何角度的刀具进行硬切削加工,在最近几年内取得了很大的进步。在很多使用场合都可以用来替代磨削。Klaus Christoffel说:“尤其适用于弧形,比如制造传动设备。”配备可随意设定刀具切削几何角度的机床越术越多地侵入磨削领地。在许多情况下,车削、钻孔、铣削或者研磨代替磨削成为理所当然的事情,而这还远没有到达顶峰。位于 Aalen城精密机床 Dr.Kress KG业务经理Dieter Kress博士坚信:CBN是未来的材料,蕴藏着巨大的发展潜力。他相信:几年之后,磨削将被硬铣削代替。为了说明硬铣削的性能,他列举了同动力连杆高精密球道的精加工。这种连杆的钟形槽,其中的球道用4刀具机床以整段制作的方式进行硬铣削。这种方式的优势是提高精度,缩短生产时间,在此基础上也可以对连杆的其他部件如配备6球道的连杆进行硬铣削。材料的硬度为58-62 HRC。同磨削相比,硬铣削的优势是显而易见的。在机床和模具生产中,从铣削软坯件到最后的手工加工(抛光),以往都需要7道加工工序。采用硬铣削可减少2道生产工序:腐蚀和再次硬化,同时提高了精度。经过加工的工件没有出现硬化变形,这样可以节约30%-40%的生产时间,大量节约成本。对联轴器高精密球道进行硬铣削,这一点已经证明是可行的。
在这里用作刀具的材料CBN仍然有巨大的潜力
在钻孔(孔眼表面质量要求很高)方面,硬处理也证明是有效的。在用锻钢和硬钢制造的高压泵内部钻一个直径为65mm孔肘,先用配备CBN双刀机床进行预钻孔,然后再用一个CBN单刃铰刀精加工。紧接着,进行形磨,目的是形成一个预期的表面结构。如果预钻孔的切削速度为150m/min,精加工的切削速度为100m/min,刀具耐用度以加工900或者400个孔为准,那么就会达到上面描述的效果。当然,好上加好。超微粒硬质合金的硬度和抗弯强度明已提高,导热性能降低,挤进了本来这是立方氨化硼机床和磨削的使用领地。然而,只有同各种涂层结合起来,精炼金属和超微粒硬质合金才能充分发挥自己在边缘稳固和高延性方面的什能。硬加工时的性能载体不只是新的基质和整个涂层系统,而机床优化的切削刃几何角度也同样重要。不只是铣削和钻孔,而且从经济角度看,车削也越来越成为替代磨削的选择。
因此,在持续和不间断的切削时,对以使用Hoffmann集团的CBN可转位刀片对硬度最高达62HRC的工件进行硬车削。这种CBN可转位刀片在某些情况下,可以用来替代非常昂贵的、费时和费钱的轮廓磨削。如此“硬的工作”使工具处于“疲劳”之中,这样的工具,它在机械和热方面的载荷很大,因此只能使用匹配的刀具材料。“所以,用于硬加工的刀具材料和机床首先必须具有热稳定性和耐磨损的特点,当然对相应的匹配的切削几何角度也是具有良好经济效益的硬处理的一个前提条件”,这是Chris-toffel对机床要求的具体说明。陶瓷和CBN位于刀硬度表的上端,但是硬质合金和金属陶瓷在某些边界条件下也适用。综合车削和磨削的机床,发挥两种方法的优势。
杜塞尔多夫Sandvik股份有限公司的技术经理Klaus Christoffel博士认为:采用可以调节几何角度的刀具进行硬切削加工,在最近几年内取得了很大的进步。在很多使用场合都可以用来替代磨削。Klaus Christoffel说:“尤其适用于弧形,比如制造传动设备。”配备可随意设定刀具切削几何角度的机床越术越多地侵入磨削领地。在许多情况下,车削、钻孔、铣削或者研磨代替磨削成为理所当然的事情,而这还远没有到达顶峰。位于 Aalen城精密机床 Dr.Kress KG业务经理Dieter Kress博士坚信:CBN是未来的材料,蕴藏着巨大的发展潜力。他相信:几年之后,磨削将被硬铣削代替。为了说明硬铣削的性能,他列举了同动力连杆高精密球道的精加工。这种连杆的钟形槽,其中的球道用4刀具机床以整段制作的方式进行硬铣削。这种方式的优势是提高精度,缩短生产时间,在此基础上也可以对连杆的其他部件如配备6球道的连杆进行硬铣削。材料的硬度为58-62 HRC。同磨削相比,硬铣削的优势是显而易见的。在机床和模具生产中,从铣削软坯件到最后的手工加工(抛光),以往都需要7道加工工序。采用硬铣削可减少2道生产工序:腐蚀和再次硬化,同时提高了精度。经过加工的工件没有出现硬化变形,这样可以节约30%-40%的生产时间,大量节约成本。对联轴器高精密球道进行硬铣削,这一点已经证明是可行的。
在这里用作刀具的材料CBN仍然有巨大的潜力
在钻孔(孔眼表面质量要求很高)方面,硬处理也证明是有效的。在用锻钢和硬钢制造的高压泵内部钻一个直径为65mm孔肘,先用配备CBN双刀机床进行预钻孔,然后再用一个CBN单刃铰刀精加工。紧接着,进行形磨,目的是形成一个预期的表面结构。如果预钻孔的切削速度为150m/min,精加工的切削速度为100m/min,刀具耐用度以加工900或者400个孔为准,那么就会达到上面描述的效果。当然,好上加好。超微粒硬质合金的硬度和抗弯强度明已提高,导热性能降低,挤进了本来这是立方氨化硼机床和磨削的使用领地。然而,只有同各种涂层结合起来,精炼金属和超微粒硬质合金才能充分发挥自己在边缘稳固和高延性方面的什能。硬加工时的性能载体不只是新的基质和整个涂层系统,而机床优化的切削刃几何角度也同样重要。不只是铣削和钻孔,而且从经济角度看,车削也越来越成为替代磨削的选择。
因此,在持续和不间断的切削时,对以使用Hoffmann集团的CBN可转位刀片对硬度最高达62HRC的工件进行硬车削。这种CBN可转位刀片在某些情况下,可以用来替代非常昂贵的、费时和费钱的轮廓磨削。如此“硬的工作”使工具处于“疲劳”之中,这样的工具,它在机械和热方面的载荷很大,因此只能使用匹配的刀具材料。“所以,用于硬加工的刀具材料和机床首先必须具有热稳定性和耐磨损的特点,当然对相应的匹配的切削几何角度也是具有良好经济效益的硬处理的一个前提条件”,这是Chris-toffel对机床要求的具体说明。陶瓷和CBN位于刀硬度表的上端,但是硬质合金和金属陶瓷在某些边界条件下也适用。综合车削和磨削的机床,发挥两种方法的优势。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条