1) cubic phase
立方相
1.
Precipitation of new cubic phase in Al-Li alloys and its mechanism
铝锂合金新型立方相的析出规律及机理
2.
The result showed that the crystal was cubic phase structure by XRD analysis and the first grade grain size was about 50 nm by SEM;the crystal form was stable using TG;the amount of impurity was about the percent of 0.
XRD分析表明晶体为立方相B aT iO3,SEM显示B aT iO3颗粒形貌主要为立方相,一次粒子的粒径约为50 nm,TG分析表明所制得的B aT iO3粉体晶形稳定,原子吸收分析表明所制得的B aT iO3粉体杂质总含量为0。
3.
Fired at l600℃ for 2h,the relative bulk density of the samples made from the powder is up to 95%and the phase of the samples is all of cubic phase.
粉末的煅烧温度为800℃,成型后试样经1600℃,2h烧成,相对体积密度达到了95%以上,且全部为立方相。
2) cubic
[英]['kju:bɪk] [美]['kjubɪk]
立方相
1.
2~2∶1) were used to prepare the cubic nano-sized zinc titanante powders.
2~2∶1的条件下,通过煅烧,得到粒径小于100 nm的立方相钛酸锌粉体。
2.
The results showed that: the CdS film realized the transition from hexagonal phase to cubic phase and the band-gap of CdS increased with the increasing of the cadmium ion concentration and the bath temperature,.
L-1)和提高沉积温度(80~90℃)来加快沉积速率,CdS薄膜晶相由六方相(H)向立方相(C)转变,且禁带宽度随Cd2+离子浓度增大逐渐变大;当Cd2+离子浓度从0。
3.
High quality cubic GaN (c GaN) is grown by metalorganic vapor deposition (MOCVD) at an increased growth temperature of 900℃,with the growth rate of 1 6μm/h.
利用 MOCVD技术在提高生长温度 (90 0℃ )下生长出了高质量的立方相 Ga N ,生长速度提高到 1。
3) cubic TaN
立方相TaN
1.
The influence of N2 pressure on the as-synthesized cubic TaN samples was studied.
结果表明:所制备的纳米粉为单一的立方相TaN,纳米颗粒的平均粒度为5-10nm。
4) cubic laves phase
立方Laves相
1.
95 substantially retained the MgCu 2 type C 15 cubic Laves phase structure and the lattice constant increases with increasing x.
95完全保持MgCl2立方Laves相结构 ,晶格常量a随Al含量x的增加而增大 。
5) cubic structure ZrO_2
立方相ZrO_2
6) new cubic phase
新立方相
补充资料:Hilbert立方体
Hilbert立方体
Hflbert cube
s沁口目s脚止)).这是一个内容丰富成果丰硕的研究领域. 【AI]中有绝好的介绍及参考文献.1翻卜时立方体〔f口加时。谕.;几几诵epT佃二.钾.,l HIIb叮空间(托1饮成sP别笼)l:的子空间,它的点x一(xl,xZ,…)满足条件0‘x,‘(合)一,,2,·…Hilbert立方体是一个紧统(印代甲aCtllnl),拓扑等价(同胚)于可数多个区间的T叮oHoB积,即毛盯OHo.立方体(T泪如加v CUbe)I从。.这是具有可数基的度量空间类中的万有空间(u苗记岛沮sp即笼)(yP“coH摩粤化定理(Ul笋ohnn毖tri皿山nd笙幻reln)). B .A.nac卜川劝B撰【补注】到山比d立方体的拓扑结构是在无穷维拓扑这一领域内得到研究的(见无穷维空间(而丽记~dinrn-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条