说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高阶理论
1)  higher-order theory
高阶理论
1.
The efficient reformulation of high-fidelity generalized method of cells making use of the efficient reformulation of higher-order theory is presented based on the hypothesis of periodicity in composite microstructure.
基于复合材料细观力学周期性假设,利用高阶理论的改进算法,对高精度通用单胞模型的计算方法进行了改进。
2.
The efficient reformulation of higher-order theory was deduced.
高阶理论的原始算法进行了改进,采用界面的平均温度替代了假设温度函数的系数做为求解的未知量,并利用了子胞的热传导方程,建立了热流与平均温度间的关系,进一步求解出温度场。
3.
n the basis of the Reddy s higher-order theory of composites, this paper introduces a displacement function Φ into it and transforms its three differential equations for symmetric cross-ply composites into only one eight-order differential equation generated by the displacement-function.
本文以复合材料的Reddy高阶理论为基础,引进一个位移函数Φ,将原来求解的微分方程组转化为一个高阶微分方程,得到了四边简支情况下的Navier型解,和一对边简支另一对边任意情况下的Levy型解·文中列举了算例进行比较,其数值结果和文献上已有结果相吻合,表明本文采用的解法是可靠的·Reddy高阶理论未知数不多,但精度比一阶剪切变形理论要好,计算时无需用剪切修正系数,计算较为简单
2)  higher order theory
高阶理论
1.
The analysis results of stress on laminated composite thick plates based on higher order theory can usually satisfy to engineering demand.
对于较厚的层合板 ,基于一般高阶理论的应力计算结果往往不能满足工程要求 。
3)  high order theory
高阶理论
1.
This study presents a simple and accurate high order theory to examine the electromechanical behaviour of piezoelectric generic shells with thicknessgraded material properties.
本文作者提出了一个简单而有效的求解压电梯度薄壳力、电行为特性的高阶理论
2.
A high order theory and corresponding finite element formula of the axis\|symmetrical composite laminated shells are presented.
提出一种轴对称旋转壳的高阶理论有限元分析模型,采用勒让德多项式逼近位移场沿轴对称壳体厚度方向的变化规律,对含分层损伤的轴对称层合壳体结构,构造了一种轴对称分层损伤模型,对分层区域内的弯曲刚度和横向剪切刚度作了修正。
4)  higher-order beam theory
高阶梁理论
1.
In this study, Lamb wave propagating in composite beams are first modelled analytically using both higher-order beam theory and elasticity beam theory, and the dispersion relations of the waves are established.
本文首先深入研究了兰姆波在无损结构中的传播问题,利用高阶梁理论和弹性梁理论建立了兰姆波在复合材料层合梁结构中的波动模型,从而求得其弥散关系,并将两种理论结果进行比较。
5)  third order shear deformation theory(TSDT)
高阶板理论
6)  upper echelons theory
高阶管理理论
补充资料:大系统递阶控制理论
      研究具有递阶结构的大系统的控制问题的理论。它包括大系统的分解和协调、最优控制和稳定性等。
  
  一个递阶系统必须具备三个基本特征:①一个由多台决策器组成的多级控制结构,其中每一级包含有一定数量的决策器。上级决策器在数量上通常少于下级决策器,整个结构呈金字塔形。每级决策器都赋予一定的决策权,同级决策器可以并行工作。②信息只能在相邻级间垂直传送,由上向下的信息传递有优先权。各决策器通过它们的模型、目标函数和约束条件等实现关联。③整个系统有一个总体目标,而每个子系统有各自的局部目标。总体目标是各局部目标的一个保序函数,最常见的形式是总体目标等于诸局部目标的算术和。经过上级决策器对下级决策器的反复协调,各子系统的局部目标与整个系统的总体目标最终将同时达到极值。
  
  大系统的分解和协调是递阶系统赖以建立的基础。分解就是把一个大系统分成若干子系统。分解的结果(不管这种分解是自然的还是概念的)产生一组有关联(耦合关系)的下级子系统。这组子系统可以在放宽关联约束之下各自求解,这样得到的解当然不可能是大系统的整体最优解。为了从整体上把握各子系统之间的关联,就需要在上级设置一个协调机构(协调器),通过协调某些变量,不断调整下级各子系统间的关系。一旦关联约束条件成立,则在一组凸性的条件下(见非线性规划),各子系统局部最优解的组合便成为大系统的整体最优解。据此选定的变量称为协调参数或协调变量。M.D.梅萨罗维茨等通过选择不同的协调变量,提出两种典型的分解协调方法──目标协调法和模型协调法。
  
  70年代,递阶控制理论在以下两个方面得到了迅速发展。①建立了各种递阶控制最优化方法,其中比较突出的有:田村坦之的三级法和时延算法、非线性系统的哈桑-辛预估法、非线性系统的三级共态预估法,以及M.G.辛和A.铁脱里等提出的线性二次型系统的闭环控制法等。②初步形成统一方法。M.S.穆罕默特等把广义梯度法和拉格朗日对偶理论结合起来,提出一种统一方法。这种方法具有下列特点:在两级结构的上下关系方面,控制级(下级)和协调级(上级)的排序是无关紧要的;每一级包含的变量数不受限制;在多台计算机并行工作的情况下,可依据每级计算机的功能适当调配其解题任务。G.科恩在无限维凸规划(见非线性规划)的基础上,依据辅助问题原理和松弛原理,建立了另一种统一方法。这两种方法都可推出大多数分解协调算法,为探索新的算法开辟了途径。
  
  参考书目
   M.G.辛,A.铁脱里编著,周斌等译:《大系统的最优化及控制》,机械工业出版社,北京,1983。(M.G.Singhand A.Titli, Systems:Decomposition,Optimization and Control, Pergamon Press, Oxford, 1978.)
   M.D.Mesarovic et al., Theory of Hierachical Multilevel Systems, Academic Press, New York, 1970.

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条