1) explicit algorithm
显式算法
1.
Based on the actual structure and specific working character of disk spring,experimentation was done on combination disk spring and the process of continuous load as well as load—unload of congruent disk spring was imitated with nonlinear explicit algorithm of the finite element software ANSYS/LS—DYNA.
从碟簧的实际结构特征和具体工作特点出发,对组合碟簧进行静刚度试验测试,并利用有限元软件ANSYS/LS—DYNA的非线性显式算法进行计算,对叠合碟簧的连续加载以及加载—卸载过程进行数值模拟,得到碟簧的载荷位移关系曲线。
2) explicit method
显式算法
1.
These two methods are used to study the arbitrarily 3D conducting objects,and the results are compared with those obtained by using the explicit method and via IFFT in the frequency domain,which show that the implicit method of central difference is better than the explicit method and backward diffe.
应用两种方法分析了任意形状三维导体目标的时域散射,与显式算法和频域经逆傅里叶变换得到的数据作比较,结果表明,中心差方法在改善晚时震荡问题方面优于后向差分方法和显式算法;应用中心差分方法计算了半波长振子天线的相关电参数,所得结果与文献结果具有较好的一致性。
3) explicit-implicit algorithm
显-隐式算法
1.
The springback processes are simulated based on explicit-implicit algorithm in this paper,and the MPF processes of the cylindrical surface and sphere with different thickness under different curvature radius are simulated.
论文中采用显-隐式算法分析了板材厚度、曲率半径对柱面、球面等典型曲面的多点成形回弹的影响,得到了回弹趋势和回弹分布规律,这些结果对多点成形技术具有一定的参考价值。
4) explicit/implicit FEM
显/隐式算法
1.
Taking a benchmark of unconstrained cylinder bending in Numisheet'2002 as a example,the bending processes were simulated under conditions of different virtual velocities and different virtual densities by explicit/implicit FEM code.
以Num isheet’2002无约束柱面弯曲回弹考题为例,采用显/隐式算法模拟了不同虚拟速度和板料虚拟密度条件下的变形过程。
5) Explicit MOT arithmetic
显式MOT算法
6) explicit symplectic geometric algorithm
显式辛算法
1.
Taking a linear separable Hamiltonian system as an example,the phase errors of Lie series algorithms and explicit symplectic geometric algorithms were analyzed in details,the accuracy order for amplitude preserving symplectic of Lie series algorithms and its improving method were investigated,by which the amplitude accuracy is increased and but phase accuracy is effected less.
以线性可分Hamilton动力学系统为例,研究了李级数算法和显式辛算法的相位精度,研究了李级数算法的保辛精度及其保辛精度的提高方法;指出了显式辛算法相位精度与算法阶次的不协调性,即辛算法的阶次高并不意味着其相位精度也高,李级数算法不存在这种问题,指出了一个算法的相位可能超前也可能滞后。
补充资料:启发式算法
计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解的算法。而启发式算法则试图一次提供一或全部目标。 例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现。因此现实世界中启发式算法很常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
有一类的通用启发式策略称为元启发式算法(metaheuristic),通常使用乱数搜寻技巧。他们可以应用在非常广泛的问题上,但不能保证效率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条