|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) flame CVD
火焰气相沉积法
1.
To probe into the effects of the interaction of chemistry and fluid mechanics in the process of flame CVD, the simulation of gas velocity and temperature profile in propane/air turbulent diffusion flame for TiO2 nano-particles production were detailed performed by using the commercial CFD-code Fluent.
为了更好地模拟火焰CVD法合成TiO2纳米颗粒过程,应用CFD商业软件Fluent,对火焰气相沉积法合成TiO2纳米颗粒的湍流扩散燃烧过程进行了详细的数值模拟。
2) Flame Dep-position Technique
火焰沉积法
3) CVD
气相沉积法
1.
Nano sam-ples were grown under three different temperature conditions in CVD(Chemical Vapor Deposition) method.
要对纳米ZnO晶体进行了喇曼背散射几何配置下的喇曼测试与分析,其样品采用化学气相沉积法(CVD),分别在三种不同的温度下生长而成。
4) vapor deposition
气相沉积法
1.
This paper reviewed the recent development of the intermetallic compounds,focusing on the preparation techniques including self-propagating high-temperature synthesis(SHS),mechanical alloying(MA),melting and casting technology and vapor deposition.
着重介绍了燃烧合成技术,机械合金化技术,熔炼和熔铸技术,气相沉积法的发展趋势及现状。
2.
In this paper several substrate surface activation methods for electroforming compos- ite material molds are briefly introduced,including traditional substrate surface activation,vapor deposition activation,DBD activation,photochemical activation and auto-catalytic activation,etc.
本文简单介绍了复合材料模具电铸工艺中基体表面活化的几种方法,包括传统的基体表面活化法、气相沉积法、介电层放电法、先化学法、自催化活化法等,讨论了它们的原理、优缺点、最新进展及应用前景。
5) physical vapor deposition
物理气相沉积法
1.
Employing the physical vapor deposition method,Bi2O3 powder was heated to 1050 ℃ at normal pressure in a horizontal tube furnace with the protection of argon gas and oxygen,and then cooled and deposited naturally.
利用物理气相沉积法,在氩气和氧气保护下将氧化铋粉末在水平管式炉中常压加热至1050℃,然后降温沉积,在硅衬底上得到了大量具有规则矩形外形的二维纳米结构——片状氧化铋。
6) Chemical vapor deposition
化学气相沉积法
1.
Silica coating was prepared by atmospheric pressure chemical vapor deposition taking HP40 steel plate as substrate,tetraethyl orthosilicate as silica source,and air as carrier gas and diluent.
以正硅酸乙酯为硅源物质、空气为载气和稀释气,采用常压化学气相沉积法在HP40钢表面制备了SiO2涂层;采用扫描电子显微镜和能量色散能谱表征了SiO2涂层的组织结构和表面形貌;考察了在乙烯裂解的工艺条件下SiO2涂层的结焦抑制能力。
2.
Single-walled carbon nanotubes have been prepared from coal gas by catalytic chemical vapor deposition technique with ferrocene as catalyst, and electrochemistry analysis was carried on supercapacitance using nanotubes as electrodes.
开发以煤气为碳源采用化学气相沉积法制备单壁碳纳米管,并对其作为超级电容器电极的电化学性能进行研究。
3.
Carbon nanotubes (CNTs) is prepared by means of chemical vapor deposition (CVD) method.
利用化学气相沉积法制备碳纳米管(carbonnanotubes,CNTs),分析了气源、催化剂及温度等因素对CNTs形貌和纯度的影响。
补充资料:气相沉积法
化学气相沉积(cvd)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(si3n4)就是一个很好的例子,它是由硅烷和氮反应形成的。www.owov.cn 成都森发橡塑有限公司 然而,实际上, 反应室中的反应是很复杂的,有很多必须考虑的因素,沉积参数的变化范围是很宽的:反应室内的压力、晶片的温度、气体的流动速率、气体通过晶片的路程(如图所示)、气体的化学成份、一种气体相对于另一种气体的比率、反应的中间产品起的作用、以及是否需要其它反应室外的外部能量来源加速或诱发想得到的反应等。额外能量来源诸如等离子体能量,当然会产生一整套新变数,如离子与中性气流的比率,离子能和晶片上的射频偏压等。 然后,考虑沉积薄膜中的变数:如在整个晶片内厚度的均匀性和在图形上的覆盖特性(后者指跨图形台阶的覆盖),薄膜的化学配比(化学成份和分布状态),结晶晶向和缺陷密度等。当然,沉积速率也是一个重要的因素,因为它决定着反应室的产出量,高的沉积速率常常要和薄膜的高质量折中考虑。反应生成的膜不仅会沉积在晶片上,也会沉积在反应室的其他部件上,对反应室进行清洗的次数和彻底程度也是很重要的。 化学家和物理学家花了很多时间来考虑怎样才能得到高质量的沉积薄膜。他们已得到的结论认为:在晶片表面的化学反应首先应是形成“成核点”,然后从这些“成核点”处生长得到薄膜,这样淀积出来的薄膜质量较好。另一种结论认为,在反应室内的某处形成反应的中间产物,这一中间产物滴落在晶片上后再从这一中间产物上淀积成薄膜,这种薄膜常常是一种劣质薄膜。www.owov.cn 成都森发橡塑有限公司 cvd技术常常通过反应类型或者压力来分类,包括低压cvd(lpcvd),常压cvd(apcvd),亚常压cvd(sacvd),超高真空cvd(uhcvd),等离子体增强cvd(pecvd),高密度等离子体cvd(hdpcvd)以及快热cvd(rtcvd)。然后,还有金属有机物cvd(mocvd),根据金属源的自特性来保证它的分类,这些金属的典型状态是液态,在导入容器之前必须先将它气化。不过,容易引起混淆的是,有些人会把mocvd认为是有机金属cvd(omcvd)。 过去,对lpcvd和apcvd最常使用的反应室是一个简单的管式炉结构,即使在今天,管式炉也还被广泛地应用于沉积诸如si3n4 和二氧化硅之类的基础薄膜(氧气中有硅元素存在将会最终形成为高质量的sio2,但这会大量消耗硅元素;通过硅烷和氧气反应也可能沉积出sio2 -两种方法均可以在管式炉中进行)。 而且,最近,单片淀积工艺推动并导致产生了新的cvd反应室结构。这些新的结构中绝大多数都使用了等离子体,其中一部分是为了加快反应过程,也有一些系统外加一个按钮,以控制淀积膜的质量。在pecvd和hdpcvd系统中有些方面还特别令人感兴趣是通过调节能量,偏压以及其它参数,可以同时有沉积和蚀刻反应的功能。通过调整淀积:蚀刻比率,有可能得到一个很好的缝隙填充工艺。www.owov.cn 成都森发橡塑有限公司 对许多金属和金属合金一个有趣的争论就是,他们是通过物理气相沉积(pvd)还是通过化学气相沉积(cvd)能得到最好的沉积效果。尽管cvd比pvd有更好的台阶覆盖特性,但目前诸如铜的子晶层和钽氮扩散层薄膜都是通过pvd来沉积的,因为现有的大量装置都是基于pvd系统的,工程技术人员对pvd方法也有较高的熟练程度。一些人建议,既然台阶覆盖特性越来越重要(尤其是在通孔边墙覆盖),cvd方法将成为必不可少的技术。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|