1) Average pollutant concentration
污染物平均浓度
2) event mean concentration (EMC)
场次降雨污染物平均浓度(EMC)
3) contamination concentration
污染物浓度
1.
Influence of groundwater discharge on decay process of contamination concentration in river flow;
地下水补给对河流污染物浓度衰减过程的影响
2.
Experimental simulation on spatial optimum estimation method of contamination concentration in groundwater;
地下水污染物浓度空间最优估值方法的实验模拟
3.
The contamination concentration process is studied.
将描述湖库中污染物混合—沉积过程的确定性模型随机化,建立了污染物混合—沉降的随机微分方程模型,研究了污染物浓度的随机动态特性,给出了一种依据污染物浓度的随机动态和沉积系数,在功能性和生态影响兼顾的前提下管理湖库的方法。
4) pollutant concentration
污染物浓度
1.
Variations of air pollutant concentrations and their evaluation in Zhangjiajie National Forest Park, China.;
张家界国家森林公园大气污染物浓度变化及其评价
2.
This paper analyses the daily data of pollutant concentration and meteorological data of Taiyuan in 2003,ex-pounds the relationship among space and time changes of pollutant concentration,pollutant concentration and meteorological conditions,refers reference for lightening and preventing air pollution.
对2003年太原市污染物浓度逐日数据和气象资料进行了分析,阐述了污染物浓度的时空变化和污染物浓度与气象条件的关系,为减轻和防止大气污染提供了参考。
3.
By applying the gray Verhuls prediction model,the change of air pollutant concentration in Benxi City is predicted with satisfy results.
运用灰色Verhuls预测模型及本溪地区 1 991~ 2 0 0 0年污染物浓度的统计资料 ,对本溪市大气污染物浓度的变化情况做出预测 ,取得了满意的结果 。
6) pollutant concentration field
污染物浓度场
1.
The influence of roof shape on the flow field and traffic pollutant concentration field in street canyons was investigated by two-dimensional numerical model,which was based on Reynolds-averaged Navier-Stokes equations,Spalart-Allmaras turbulence model and pollutant transport equations.
采用Spalart-Allmaras湍流模型,通过求解二维连续性方程,Navier-Stokes方程及污染物输运方程,模拟了具有不同屋顶形状的街道峡谷的流场及交通污染物浓度场。
2.
Atmospheric flow field and pollutant concentration field were simulated by using the modified k-ε turbulent model on the condition of different spaces between buildings.
采用修正的k-ε湍流模型对不同建筑间距情况下的大气流场、污染物浓度场进行模拟研究。
补充资料:对数平均浓度差
分子式:
CAS号:
性质:指传质过程中两端点(传质设备前后)浓度差ΔCa、ΔCb的对数平均值ΔClm=。当平衡线及操作线均可视为直线、总传质系数可取为常数时,△Clm即为传质过程的平均推动力。
CAS号:
性质:指传质过程中两端点(传质设备前后)浓度差ΔCa、ΔCb的对数平均值ΔClm=。当平衡线及操作线均可视为直线、总传质系数可取为常数时,△Clm即为传质过程的平均推动力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条