说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 刚塑性可压缩
1)  compressible rigid-plastic materials
刚塑性可压缩
2)  rigid-plastic materials
刚塑性可压缩材料
1.
Introduces the principle of the EFGM (Element-Free Galerkin Method) and its application to steady state rolling process of slightly compressible rigid-plastic materials.
将一种新的数值方法无网格伽辽金法(EFGM)用于刚塑性可压缩材料稳态轧制过程的模拟,由于形函数不满足插值条件,采用罚函数法满足本质边界条件;为提高精度,选用矩形影响域的张量积核函数;利用有限元背景网格作为积分单元,对求解域内和边界上采用不同的高斯积分方案·数值计算结果与刚塑性有限元的计算结果和文献中的实验数据吻合较好,说明无网格伽辽金法用于刚塑性可压缩材料轧制过程的可行性和正确性
3)  compressible solids
可压缩弹塑性
4)  compressible plastic mechanics
可压缩塑性力学
1.
The continuous constitutive models and compressible plastic mechanics in metal cellular materials is reviewed.
对泡沫金属材料的连续本构模型与可压缩性塑性力学进行了评述,并介绍了根据J2流动理论得到的可压缩塑性力学的本构关系,以及该本构关系在求解泡沫金属材料平面应力裂纹缓慢扩展问题中的应用,并将所得结果与一般幂硬化材料中的相应结果进行了比较,从而在一定程度上揭示了可压缩塑性力学与经典塑性力学之间的关系。
5)  unyielding support
不可压缩支架,刚性支架
6)  plastic compression
塑性压缩
1.
To explore the compaction mechanism of soft inclusion soils for reference to construction and design,a compaction model is established based on the analysis of both pore space reduction and plastic compression of highly compressive material ingredients.
为探索软夹杂土体压实的机理和规律,指导软夹杂土体的压实施工和配方设计,从孔隙的减少和高压缩性材料的塑性压缩两个角度进行分析建立软夹杂土体的击实模型,推演其密度计算式;以泡沫塑料混合轻质土为例,利用室内试验测试模型参数,并对所建击实模型和计算式进行验证。
补充资料:刚—塑性变分原理


刚—塑性变分原理
rigid-plastic variational principle

gang一suxing bianfen yuanli刚一塑性变分原理(rigid一plastiC variationalPrinciple)适于刚一塑性材料的能量泛函的极值理论。它是刚一塑性体变形力学极限分析的重要原理。在塑性加工力学中应用最多的是马尔科夫(A·A. MapKoB)变分原理和不完全广义变分原理。应用尚少的还有刚一塑性材料的完全广义变分原理和希尔(R.Hill)变分原理。 设刚一塑性体的体积为V,表面积为匀S又分凡和s户两部分,在s。上给定速度公‘,在s,上给定单位表面外力乡*。忽略质量力和惯性力以及不考虑存在速度间断面,并认为过程是在等温下进行的。对于塑性变形区,正确解应满足如下的方程和边界条件: (1)平衡方程今,,~O; (2)米泽斯(R.、。。M ises)屈月除件‘司,一粤减; -一一’·’‘了‘少3一’ (3)几何方程。,一合(V!,,+V,,,); (4)列维(M.Levy)一米泽斯本构关系成~ 压二通匕 ”“丫瓦可’ (5)体积不可压缩条件氏一已‘~o; (6)边界条件:在s户上。,n,=乡:,在s。上v:一云、; 马尔科夫变分原理在满足几何方程(3)、体积不可压缩条件(5)和速度边界条件v,一公的一切运动许可速度场计中使泛函 ’一作·万俪d一好、!一1)的神一。,并中取最小值的。,必为本问题的正确解。式(l)中右方第一项是塑性变形所耗功率;第二项是给定外力面上的外力功率。此原理作为塑性加工变形力学问题能量解法和有限元解法的基础。 塑性加工成形时考虑到工具和工件接触面上的单位摩擦力劝以及存在速度间断面SD,并认为其上的剪应力等于屈服剪应力k,此时式(1)可写成 。一褥哪佩dv+梦’“f’‘“十 彗““t‘dS‘2,式中幻f为工具与工件接触面的相对速度;如,为速度间断面上的速度间断量。 刚一塑性材料不完全广义变分原理应用马尔科夫变分原理时须预设定满足运动许可条件的速度场。此时几何方程和速度边界条件较易满足,而体积不可压缩条件较难满足。所以可把体积不可压缩条件乘以拉格朗日乘子又引入泛函式〔D中。这样就可把泛函式(l)的条件极值间题变成对新泛函求无约束条件的驻值问题。此即为不完全广义变分原理,其新泛涵表达式为一拜asI佩dV一[%26ividS十万‘,dv (3)刚一塑性材料不完全广义变分原理表明,在一切满足几何方程和速度边界条件的速度场中使泛函式(3)取驻值(a巾‘一0)的v‘为正确解。此泛函取驻值时的拉格朗日乘子*一粤。,一、。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条