1) damping reinforced mechanism
阻尼增强机理
2) improvement of damping
阻尼增强
3) damping mechanism
阻尼机理
1.
Damping capacity and damping mechanism of ZA27-4%Si alloy;
ZA27-4%Si合金的阻尼性能及阻尼机理
2.
The damping mechanism of high damping materials is reviewed after discussing the hot research topics.
介绍了阻尼的基本概念,评述了常见的高阻尼机理以及高阻尼材料的主要研究热点,列举了几类常见的高阻尼材料,分析了其特点,并指出其阻尼性能的影响因素。
3.
The damping mechanism of magnesium alloy was introduced,which is belongs to dislocation damping mechanism under the room temperature.
介绍了镁合金的阻尼机理,在常温下其阻尼机制主要是位错机制,在高温条件下,由于晶界也参与滑移,所以除了位错阻尼外还有晶界阻尼的贡献。
4) fire-retardant reinforced nylon
阻燃增强尼龙
5) strengthening mechanism
增强机理
1.
By proper dispersion and hot pressing injection of the mixture, the Al2O3/SiO2 ceramic cores nano-composites were prepared, and the strengthening mechanism were studied.
用粉体分散及热压注方法制备了Al2O3/SiO2纳米复合陶瓷型芯材料,研究了Al2O3/SiO2纳米复合陶芯材料的增强机理。
2.
This paper expounds the strengthening mechanism of steel fiber concrete,and connecting with the example of the application of steel fiber concrete in the beam pavement construction in Haikou Prefabricated Beam Plant,discusses on the optimum design scheme of the mixture ratio of the steel fiber concrete,and sums up the features of the construction techniques.
阐述了钢纤维混凝土增强机理,结合海口制梁场梁体铺装层钢纤维混凝土的应用实例,论述了钢纤维混凝土配合比优化设计方案,总结了其施工技术特点。
3.
The article briefs the application of post pressure grouting to bored pile by describing the strengthening mechanism of pressure grouting to the resistance at pile side and pile end and by presenting quality-control essentials of post pressure grouting.
文章简要介绍了国内灌注桩后压浆法的应用情况,分析了灌注桩桩侧后压浆和桩端后压浆的增强机理,并结合工程实例介绍了后压浆质量控制要点。
6) reinforcement mechanism
增强机理
1.
Study on reinforcement mechanism of short fiber/rubber foam composite;
短纤维对橡胶发泡复合材料增强机理的细观分析
补充资料:单位阻尼能
分子式:
CAS号:
性质:变形周期中损失的能量与材料体积之比。亦称之为单位阻尼能。高分子材料具有黏弹性,发生变形时不是完全的弹性变形,而伴随着发生塑性变形。在发生塑性变形时,由于分子间或晶面间的滑移,摩擦生热等耗去了能量,因此不能使原加的能量完全以形变能贮存,并在恢复过程中释放。失去的那部分能量就属于能量损耗。正确了解这一点,就可以根据不同用途来进行选材,也对新材料的研究起指导作用。
CAS号:
性质:变形周期中损失的能量与材料体积之比。亦称之为单位阻尼能。高分子材料具有黏弹性,发生变形时不是完全的弹性变形,而伴随着发生塑性变形。在发生塑性变形时,由于分子间或晶面间的滑移,摩擦生热等耗去了能量,因此不能使原加的能量完全以形变能贮存,并在恢复过程中释放。失去的那部分能量就属于能量损耗。正确了解这一点,就可以根据不同用途来进行选材,也对新材料的研究起指导作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条