1) renormalization group
重整化群
1.
A simple renormalization group model is proposed to assess the influence of geometric factors (such as aspect ratio, orientat.
一简单的重整化群模型被用来评估粘土几何因素(诸如径厚比、取向、剥离程度等)对聚合物/粘土纳米复合材料阻隔性能的影响,所得到的逾渗阈值及最佳粘土含量与实验结果吻合。
2.
The decimation real-space renormalization group method is applied to S~4 model on the non-branching Koch curve, and the critical point and critical exponents are calculated.
用部分格点消约重整化群变换的方法 ,研究了无分支Koch曲线上S4 模型的相变和临界性质 ,求出了临界点和临界指数 。
3.
A three-dimensional mathematical model for simulating the gas flow in pre-calciner with rotational and gushing effect is developed by means of renormalization group K -ε turbulence model and the SIMPLE method.
描述了旋喷结合分解炉内气体流动的基本运动方程,提出了用重整化群(renormalization group)K-ε方法处理旋喷结合分解炉数值模拟的方法,并针对工程应用中的分解炉进行了模拟计算及分析比较。
3) RNG-turbulent model
重整化群(RNG)
4) renormalization group theory
重整化群理论
1.
The renormalization group theory is applied to calculating the critical behavior of water in which density fluctuation is taken into account.
采用重整化群理论计算了超临界水的性质 。
2.
The thermodynamic properties of fluid near to and far from the critical point can be described by the classic mean-field equation-of-state with a correction based on renormalization group theory of fluid developed by White.
平均场状态方程结合重整化群理论的方法能预测流体的临界性质以及远离临界点的热力学性质。
5) renormalization group approach
重整化群方法
1.
We use the renormalization group approach to treat the problem of site percolation on SQ13-square-lat- flee.
采用实空间重整化群方法,对二元SQ13正方格子点渗流模型进行了研究,得到了临界值P_c,模型在相变点的临界指数v。
2.
We use the renormalization group approach to treat the problem of bond percolation model on simple cubic lattice with next-nearest neighbor interactions.
采用实空间重整化群方法,对次近邻简立方格子键渗流模型进行了研究,得到了临界值Pc、模型在相变点的临界指数ν。
3.
The renormalization group approach is used to treat the problem of bond percolation on simple cubic lattice.
采用位置空间重整化群方法,对简立方格子(SC)键渗流模型进行了研究,得到了临界值pc、模型在相变点的分形维数D和临界指数γ。
6) renormalization group
重整化群变换
1.
Using the method of renormalization group and spin rescaling,phase transition and critical phenomenon of Ising mode with m embranchment and Koch curve is disucessed.
利用重整化群变换和自旋重标相结合的方法,研究m分支Koch曲线的Ising模型的相变和临界现象。
2.
The Ising model on a family of Koch curves is studied by the renormalization group method.
利用重整化群变换的方法,研究了一族Koch曲线上Ising模型的临界性质,求得了系统的临界指数,发现临界指数只与Koch曲线的分形维数有关。
补充资料:公理化方法(见公理化和形式化)
公理化方法(见公理化和形式化)
axiomatical method
gongllbuafangfa公理化方法化和形式化。(axiomatieal method)见公理
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条