1) strain induced transformation
应变诱发相变
2) stress-induced phase transition
应力诱发相变
1.
With the X-ray diffraction and optical microstructure analysis,investigation was made on the feature of stress-induced phase transition at low temperature (below the room temperature ) and shape memory effect in the Fe-17Mn-10Cr-5Si-4Ni alloy.
用X射线衍射分析、显微组织观察等研究了Fe -17Mn - 10Cr - 5Si- 4Ni合金在低温 (低于室温 )下应力诱发相变的特点及其形状记忆效应。
3) induced phase transformation
诱发相变
4) Strain-Induced
应变诱发
1.
Effect of Cu on Strain-Induced Martensite Transformation in 304 Austenite Stainless Steel;
Cu对304奥氏体不锈钢应变诱发马氏体相变的影响
2.
By means of X-ray diffraction technique,the effects of C、Mn、Cr and Ni on the tensile properties and the tendency of strain-induced martensite transformation in AISI 304 stainless steel have been investigated.
借助于X射线衍射,研究了C、Mn、Cr和Ni含量对304奥氏体不锈钢拉伸力学性能和应变诱发马氏体相变倾向的影响。
5) strain-induced martensite transformation
应变诱发马氏体相变
1.
The strain--induced martensite transformation the important service property of ZGMn8CrMo in low or medium impact energy.
在低、中等冲击能量条件下实现应变诱发马氏体相变是ZGMn8CrMo钢的重要服役特征。
2.
The results show that when the ratcheting strain reaches a certain value high enough,the strain-induced martensite transformation occurs in the process of ratcheting deformation.
结果表明:304不锈钢棘轮变形过程中,当棘轮应变达到一定值后会产生应变诱发马氏体相变,形成板条状马氏体,并且随循环周次的增加,形成的应变诱发马氏体相对量逐渐增加。
3.
The results show that the strain-induced martensite transformation mechanism is that,dislocation,fault and twins arise one after the other with the accumulation of impact energy and the increase of strain,and then martensite embryos form and grow up on the surface of the twins.
结果表明,在表面层深6 mm范围内,ZGMn8CrMo铸钢发生了应变诱发马氏体相变,其相变机理为:随积累冲击能量的提高,材料的应变量增加,奥氏体基体依次发生位错、层错、孪晶并在孪晶表面形成马氏体晶胚并长大的马氏体相变过程。
6) stress-induced → martensitic transformation
应力诱发→马氏体相变
补充资料:相变诱发塑性钢
分子式:
CAS号:
性质:有塑性变形强化和相变诱发塑性的高强度高塑性钢,简称TRIP钢。其典型的化学成分为C 0.3%,Cr 8%,Mo 4%,Mn 2%,Si 2%。强度可高达1400MPa至2000MPa,并且在如此之高的强度下还具有高达20%~30%的伸长率。因此,这种钢的冲击韧性和断裂韧性很高,适用于制造低温下工作的压力容器等。
CAS号:
性质:有塑性变形强化和相变诱发塑性的高强度高塑性钢,简称TRIP钢。其典型的化学成分为C 0.3%,Cr 8%,Mo 4%,Mn 2%,Si 2%。强度可高达1400MPa至2000MPa,并且在如此之高的强度下还具有高达20%~30%的伸长率。因此,这种钢的冲击韧性和断裂韧性很高,适用于制造低温下工作的压力容器等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条