1) quantification theory
数量化理论
1.
A research on gas content prediction model based on quantification theory;
基于数量化理论的瓦斯含量预测模型研究
2.
Study of quantification theory of rocky surrounding rock sub-classification during construction
岩质围岩施工阶段亚级分级的数量化理论研究
3.
The quantification theory and characteristic analysis are been applied to qualitative research into and comprehensive delineation for the gold deposit concentrated regions and the anomaly regions in Xinjiang Province.
应用数量化理论和特征分析方法,对新疆阿尔泰地区金矿床密集区和异常密集区进行了综合性圈定和定量研究,建立了扩展模型。
2) theory of quantification
数量化理论
1.
The method of choosing reaction degree when the application of the theory of quantification in gas content forecast;
利用数量化理论预测瓦斯含量时反应度的取值方法
2.
Synthesis processing for ultrasounic information with theory of quantification and the establishment of estimation system for gestational age and fetal weight;
用数量化理论综合处理超声信息和胎龄、胎重预测系统的建立
3.
In order to predict gas outburst accurately, mathematical geology model of coal and gas outburst was set up by the second theory of quantification, and which was applied and validated in Zhongmacun Mine of Jiaozuo Mining Group Company.
在焦作中马村矿应用研究结果表明 :由于煤与瓦斯突出的分区分带主要受地质条件控制 ,运用数量化理论Ⅱ ,可以借助已知瓦斯突出类型的若干地质变量 ,建立该矿井煤与瓦斯突出的数学地质模型 ,并预测未知区的瓦斯突出 ,这可提高瓦斯突出预测的准确性和可靠
3) quantitative theory
数量化理论
1.
Application of quantitative theoryⅠin the rock classification for the construction by TBM;
数量化理论Ⅰ在TBM施工围岩分类中的应用
2.
The models about maximum flow and stable flow L8 limestone aquifer in east part of Jiaozhuo Mine Area are established by quantifying the quality variables according to quantitative theory Ⅰ.
选取对大煤底板八灰突水水量有影响的地质因素,如构造、岩溶、矿压、突水系数、新突水点至老突水点的最近距离为自变量,以最大突水量、稳定突水量为基准变量,用“数量化理论Ⅰ”将定性变量数量化,与定量变量联合建立焦作东部矿区的八灰突水量预测模型。
3.
Based on the quantitative theory,studies show that key factors affecting habitat selection of Tibetan gazelle (Procapra picticaudata) in summer in the north western plateau of Sichuan include water sorurce,vegetation type and shelter con dition while secondary factors include food abundance,human disturbance and elevation.
利用数量化理论对川西北高原藏原羚夏季生境选择进行了研究,发现影响藏原羚夏季生境选择的主要因子有水源、植被类型、隐蔽条件,次要因子为食物丰盛度、人为干扰和海拔高度;其最适生境为隐蔽条件较好、水源较近的草甸草原。
4) numerical theory
数量化理论
1.
This paper uses the numerical theory,constructs the mathmodel of the effect of coalseam injection prediction, and combines with the case example tO predict.
应用数量化理论,给出了煤层注水效果的预测数学模型,预测实例表明,采用数量化理论建立的计算机预测煤层注水效果的方法不仅可以确切地判定所给定的注水组合参数是否最优,同时还揭露了注水参数与水分增值的内在关系,为调控参数提供了科学手段。
2.
This paper uses the numerical theory,constructs the math model of the effect of coalseam injection prediction,and gives an example of prediction.
本文应用数量化理论,给出了如何建立煤层注水效果的预测数学模型,并结合实例,进行了预测。
3.
Based on principles of numerical theoryⅠ, a mathematic model for forecast of parameters and the effectiveness of water infusion (the moisture increment)is built, which provides a method for the engineers at site to forecast the effectiveness and adjust the parameters with a computer.
本文运用数量化理论Ⅰ的原理,给出了煤层注水诸工艺参数与注水效果(即煤体水分增值)的预测数学模型,为现场注水预测和工艺参数调整提供了用计算机进行分析的方法。
5) quantitative theory I
数量化理论Ⅰ
1.
Based on the collected data of stand growth and environmental factors of 118 sample plots, according to the quantitative theory I, the authors set up the predicting model of self-thinning of Cunninghamia lanceolata plantation, using ten qualitative factors and four quantitative factors which have much influence on forest self-thinning of Cunninghamia lanceolata.
收集了 1 1 8块杉木人工林样地的林分生长和环境因子资料 ,用环境因子中 1 0个定性和 4个定量因子对杉木人工林自然稀疏具有较大影响的因子 ,应用数量化理论Ⅰ建立了杉木人工林自疏过程密度变化的预报模型。
2.
orientalis using quantitative theory I.
该文以北京山区优势针叶树种侧柏为研究对象,采用数量化理论Ⅰ的方法,研究了不同立地因子对侧柏生长的影响。
6) quantification theory I
数量化理论Ⅰ
1.
Application of quantification theory I to prediction of gas emission from No.5 seam of Tangshan Mine;
数量化理论Ⅰ在唐山矿5煤层瓦斯涌出量预测中的应用
2.
Took the quantification theory I as the modeling tool,worked out gas content predicting software by the use of Visual C++6.
分析了协庄矿11煤层已采区30个煤样的瓦斯含量及其等值线图,以数量化理论Ⅰ为建模工具,运用VisualC++6。
补充资料:多通道量子数亏损理论
一种可以统一处理原子激发态(即受激态)能级结构的量子理论。已经被推广应用于处理负离子和双原子分子的激发态能级结构。原子激发态能级结构包括分立、自电离共振和连续三类能谱区域。原子的连续能级和自电离共振能级结构同电子与该离化态原子的各种碰撞过程密切相关。当激发态原子可以被视为"一个离子实和一个激发电子"的体系时,多通道量子数亏损理论能够严谨地分析其激发态能级结构和有关的物理过程。激发电子可以是束缚的,也可以是非束缚的,这将视该激发态处于分立能级,自电离共振或连续能态而定。对这个激发电子来说,在位形空间中可分解为两个区域──作用域内和作用域外。在作用域内,激发电子穿入离子,和离子组成一个复合体,此时电子与离子相互作用是个多体问题──必须考虑所有电子之间的相互作用。在作用域外,激发电子和离子间的相互作用可以用库仑势来描述。这就成为量子力学中的双体问题──即单电子问题。离子可能有不同的能态,激发电子也可有不同的角动量和能量。因此,对于具有一定总能量、总角动量和宇称性的"电子-离子"体系,将有各种不同的分解模式。例如,把氩原子的3p电子激发至s或d的激发轨道,形成处于激发态的氩原子,当该激发态的总角动量和宇称性为Jπ为1-时,将存在对于该氩离子(2P┩或2P7/2)与激发电子(S┩、d7/2或d5/2)的五种耦合,即(2P7/2s┩)、(2P┩s┩)、(2P7/2d7/2)、(2P┩d7/2)和 (2P7/2d5/2)。这些分解模式被称为分解通道。在特定分解通道中,作用域外的单电子问题可以用解析方法严谨地求解。因此只要确定了这"电子-离子"体系波函数在作用域面的边界条件,该体系的激发态能级结构就可以简化成为量子力学中的单电子问题;具体地说,利用库仑波函数的数学性质,可以由各种不同的无限远边界条件解析地得出各种不同的能级结构。因此,可以统一地描述分立、自电离共振和连续能态结构,以及有关的碰撞物理问题。
多通道量子数亏损理论表明,可以用短程散射矩阵(不计长程库仑作用引起的相移,因这部分已经解析地处理完毕)代表作用域面的边界条件,该短程散射矩阵的对角化表象就是本征通道。本征通道的物理图像可以理解为: 在第α个本征通道中,由于作用域内的较强的相互作用,使得在作用域外所有分解通道的电子径向波函数成为具有共同相移πμα的库仑驻波,在各个分解通道中的库仑驻波则以特定的权重Uiα线性叠加在一起(下角标表示各分解通道)。因此所有的本征通道能够有效地描述在作用域内复合体的动力学特性,并可用下列物理参数定量地描述:它们是短程散射矩阵的本征值(即本征量子数亏损μα)和其本征矢量 Uiα(所有本征矢量组成正交的转换矩阵)。这组物理参数的值可以从下面两种方法之一得到:①根据精确的能谱实验数据,采用数值逼近法决定;②采用第一原理的理论计算方法决定。实践中认为这两种方法相互结合是最有效的。当体系激发能量变化时,这组物理参数的变化是缓慢平滑的,因此只要得到本征量子数亏损μα和转换矩阵Uiα的数据,就等于定量地掌握了该原子体系的激发能级结构及其有关的物理过程。
多通道量子数亏损理论表明,可以用短程散射矩阵(不计长程库仑作用引起的相移,因这部分已经解析地处理完毕)代表作用域面的边界条件,该短程散射矩阵的对角化表象就是本征通道。本征通道的物理图像可以理解为: 在第α个本征通道中,由于作用域内的较强的相互作用,使得在作用域外所有分解通道的电子径向波函数成为具有共同相移πμα的库仑驻波,在各个分解通道中的库仑驻波则以特定的权重Uiα线性叠加在一起(下角标表示各分解通道)。因此所有的本征通道能够有效地描述在作用域内复合体的动力学特性,并可用下列物理参数定量地描述:它们是短程散射矩阵的本征值(即本征量子数亏损μα)和其本征矢量 Uiα(所有本征矢量组成正交的转换矩阵)。这组物理参数的值可以从下面两种方法之一得到:①根据精确的能谱实验数据,采用数值逼近法决定;②采用第一原理的理论计算方法决定。实践中认为这两种方法相互结合是最有效的。当体系激发能量变化时,这组物理参数的变化是缓慢平滑的,因此只要得到本征量子数亏损μα和转换矩阵Uiα的数据,就等于定量地掌握了该原子体系的激发能级结构及其有关的物理过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条