1) optimization of drawing process
拉深工艺优化
3) drawing process
拉深工艺
1.
The hot drawing process for the sheet of AZ31 magnesium alloy was discussed.
主要研究了镁合金热拉深工艺过程中,各工艺参数包括拉深温度、压边间隙、润滑条件、拉深速度等对镁合金拉深成形性能的影响。
2.
In the article,the tube drawing process design system that uses AutoCAD2006 as a platform is developed by the tool of VBA.
以AutoCAD2006作为平台,用VBA为工具开发了筒形件的拉深工艺设计系统。
3.
The forming process of variable cross-section spiral-shaped was studied, and the key factors which affect the drawing process were synthetically discussed mainly including the drawing system parameters, the size of the blank and cavity of mould.
采用多道次高温拉深工艺,坯料周边余量留取15mm,坯料圆弧与直线交接部位开取合适的工艺缝,模具设计中型腔尺寸缩量5%,在此工艺参数下试制的蜗壳件形状尺寸可较好的满足实际使用要求。
4) Drawing Technology
拉深工艺
1.
The Drawing Technology for the Shell of Clutch and Design of the Die;
离合器外壳拉深工艺及模具设计
2.
The drawing technology for CM sleeve barrel was analyzed.
分析了CM套筒的拉深工艺,介绍了级进模的结构及特点,对模具和夹具的相互运动过程进行了说明。
3.
In this paper,the drawing technology of the toolbox rectangular part was analyzed,the dimensions and shape of the blank were calculated,the drawing times and dimensions of the part were determined,the structure design of the blanking-drawing compound die for the part was introduced.
分析了工具箱矩形件的拉深工艺,计算了矩形件的毛坯形状及尺寸,确定了拉深次数及其工序尺寸,介绍了工具箱矩形件落料-拉深复合模结构设计。
5) Deep-drawing process
拉深工艺
1.
Design and realization of knowledge base in intelligent deep-drawing process design system;
拉深工艺智能设计系统中知识库的设计与实现
2.
In this paper,the numerical simulation of variable Blank-holder Force has been carried out with the aid of the Finite Element Method software DYNAFORM,and the best optimum load curve of Blank-holder Force of deep-drawing process of a conical part has been obtained.
结果表明,变压边力拉深工艺能够极大提高板料的极限拉深高度。
3.
In this paper an intelligent deep-drawing process design system for complex circular shells is developed,which build the product representation based on shape element and the knowledge base by machine learning technology.
研究了复杂轴对称零件拉深工艺智能设计过程中知识获取、集成和应用的方法,包括基于形状单元的产品表示、基于设计手册的设计过程知识获取、基于仿真技术和机器学习技术的成形性能评价知识获取和设计参数调整与控制知识获取等,开发了基于知识的智能设计系统,引导设计人员快速、有效地完成轴对称壳体拉深件的设计,并通过一个设计实例验证了方法的可行性。
6) technological surface for drawing
拉深工艺面
1.
The generating method of technological surface for drawing and the die structure were proposed,and the key points in the design of the main parts and structure were analyzed.
制定了车身衣帽板的拉深工艺,给出了拉深工艺面的生成方法和模具的总体结构,并就主要的零件和结构设计中应注意的问题进行了分析,提出了解决问题的措施,制造出客户满意的产品。
补充资料:轧制工艺优化
轧制工艺优化
optimization of rolling technology
zhazhi gongyi youhua轧制工艺优化(optimization of:olling ree卜nofogy)轧制工艺由顺序喇咧的若干工序组合而成。因此车啸{工艺优化,包括工序局部优化和流程整体优化。 工序局部优化影响因素比较单一、且以只调整局部工艺流程为手段的轧制工艺优化。例如初轧方坯鱼尾最短问题。初轧方坯时,由于钢坯高宽比大,钢坯表面层和中心层金属的延伸存在差异,钢坯头尾产生鱼尾,使金属收得率降低。影响初轧方坯端部形状的因素很多,如锭型、初轧机型式、孔型设计和压下规程等。通过观测钢坯端部的变形规律,先提出影响鱼尾长度的数学表达式,并由此出发,进一步制订出鱼尾最短的优化压下制度。 已知鱼尾长度与道次压下量的关系式为 了K,H、 △U~KI从19【资于} --一一叭从/式中△U为鱼尾长度;K,,K:为形状系数;从为压下量;H为原料厚度。轧制方坯时,需要经常翻钢90“。当钢坯在两个方向轧制的的情况下,沿X轴压下时,鱼尾长度为 L; 队一U,一12;号丁+胡一‘一1,“,’一”式中U,为第i道次的鱼尾长度;及/二一l为第i道次的延伸系数。沿Y轴压下时 U,一U,一台+叨,,,一‘,2,一式中石/几一:为第j道次的延伸系数,二,一二3从;19{丛给卫} 一,一,一”一。、O六,)式中形状系数Kl、KZ、K3、K;随钢种、轧制条件(轧制温度、速度、孔型形状及润滑状况)的不同而变化。 在制订鱼尾最短优化压下规程时,既要使总轧制道次和成品尺寸保持不变,以保持相同的产量和质量水平,又应使钢坯的鱼尾最短,以提高金属收得率。显然,这是一个求无约束极小值问题。其优化算法是:首先根据钢坯的高宽比决定一个压下方向(沿X或Y轴方向),然后选用黄金分割法(0 .618法)计算出钢坯鱼尾最短时的压下量。 生产实践证明:按通常压下规程轧制,方坯鱼尾长度为106mm,而用最优压下规程生产方坯时,鱼尾只有nmm,金属收得率(按重量计)提高1.5%,同时,翻钢次数由5次减为4次,轧制效率也有所提高。 流程整体优化影响因素较多,且以调整整个工艺流程才能达到目的的轧制工艺优化。例如冷轧带钢纵向厚度偏差最小问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条