1) Numerical method
数值方法
1.
Micro models and numerical methods of microsegregation simulation;
显微偏析数值模拟的微观模型和数值方法
2.
Difference orthogonal discrete method:a new numerical method solving two-dimensional magneto-elastic problem;
求解二维磁弹性问题的一种数值方法——差分正交离散(DOD)法
3.
Investigation of numerical methods on the capturing-discontinuity using compact schemes;
利用紧致格式捕捉间断的数值方法研究
2) numerical methods
数值方法
1.
Comparison of four numerical methods for calculating seismic response of SDOF system;
四种计算地震反应数值方法的比较研究
2.
For determining the potential distribution of the protected structure in a moreaccurate and efficient way,engineers sought a more efficient method than the traditional methodtosolve engineering problem,hence the numerical methods has been used to solve cathodic protection(CP) problems along with the development of computer technology and has greatly advanced the CP technology .
本文综述了数值方法在阴极保护中的应用状况、发展情况,进而对未来发展作了展望。
3.
Typical numerical methods based on convexification, mesh transformation and discontinuous finite element method are discussed.
介绍了计算晶体微观结构的几种数值方法及有关的数值分析结果。
3) numeric method
数值方法
1.
The mode of a photon-added double-mode SU(2) coherent state|M,ξ;m〉=A_(Mξm)a~(+m)|M,ξ〉is introduced and its quantum statistics property is investigated with numeric method.
构造了单a模加光子双模SU(2)相干态|M,ξ;m〉=Ama+m|M,ξ〉,并用数值方法研究它的量子统计特性。
2.
The combination of analytic and numeric methods is an important approach to enhance computational efficiency.
解析方法与数值方法有效融合是提高计算效能的重要途径。
3.
The superposition of excited double-mode SU(2) coherent state |ψ=Cm(|M,ξ;m+ei|M,ξ*;m) is constructed and its quantum statistical properties are investigated with numeric method.
构造了叠加激发双模SU(2)相干态|ψ>=Cm(|M,;ξm>+ei|M,ξ*;m>),用数值方法研究它的量子统计特性。
4) numerical simulation
数值方法
1.
Based on the mechanisms for stress-assisted corrosion problem in oil-pipe system,authors have carried out numerical simulation,with application of Charles-Hillig Model[1] to study the behavior of crack propagation,where the advanced front-tracking method has been employed for finite element mesh construction and re-construction.
基于油气管道表面微裂缝在应力和腐蚀耦合作用下的扩展机理,根据Charles-Hillig模型用数值方法模拟了裂缝的动态扩展过程。
2.
Based on the mechanisms for stress-assisted corrosion problem of ship structures,the numerical simulation was carried out,with application of Charles-Hillig Model,to study the behavior of crack propagation,where the advanced front-tracking method was employed for finite element mesh construction and re-construction.
基于船体表面微裂缝在应力和海水腐蚀耦合作用下的扩展机理,根据Charles-Hillig模型用数值方法模拟了裂缝的动态扩展过程,并用front-tracking图形技术开发了有限元网格剖分软件,从根本上解决了以往该模型无法进行数值模拟的难题。
5) numerical technique
数值方法
1.
Finally,the estimation expression of crosstalk noise of uniform RLC model in time domain is presented by numerical technique.
最后运用数值方法得到均匀RLC互连线串扰噪声的时域估计表达式。
2.
With the wide application of computers,many more numerical techniques can be used in the spore-pollen analysis today.
计算机的普及使得多种数值方法能应用于孢粉分析中。
6) new numerical procedure
新数值方法
补充资料:Cauchy问题,常微分方程的数值方法
Cauchy问题,常微分方程的数值方法
audiyproHem, numerical methods for ordinary differential equations
Ca‘hy问皿,常橄分方程的数值方法【Ca“由y脚曲幻11,numeri因me山川s址。浦n.令山价跨n柱al equ劝舰s;Ko山“3a几a,a,叼“c月eltH石此MeTo口‘1 pe山e““,皿几,浦姗u此eu“oro职中钾Peuu.a几研oroyP韶ne..,1 Q以为y问题是求满足一个微分方程(或微分方程组)的一个函数(或几个函数),并在某固定点上取给定值的问题.设y(x)={yl(x),…,yn(x)}, f(x,y)=仃l(x,y),…,儿(x,少)}为分别在闭区间I=笼x:}x一al簇A}上和闭区域n二{(x,y):lx一al簇A,}{y一bl!簇B}内有定义并连续的向量函数,其中日.}}是有限维空间R”的范数.使用这个记号,我们可将一阶常微分方程的Q议为y问题写成: 少’(x)=f(x,少),少(x。)=少。,x。。I,少。Ell.(I) 适当选择新未知函数可将任一常微分方程组(任意阶的)的Q议hy问题简化成这种形式. 如果函数f(x,y)在n中连续,问题(l)有解.对解的唯一性的充分条件是05即od条件(05即od condi石on): 1 1 f(x,川一f(x,少2)}】(。(}}少:习:}}),(2)其中。(t)函数满足 c(工、00.。*0.。>0. 毛.气l)或者是更强的Li声chitZ条件(Li声Chilz condltion): I}f(x,少、)一f(x,yZ){}簇L! .y,一y:}!(3)成立,数L称为Li详Chi仪亨攀(Li声chitZconstant)·如果f(x,力对y连续可微,那么Li详d腼tZ常数的一个可 能值为 “一絮11常11·(4)在Li详chitZ常数(4)太大的各种情况下,用数值方法成功地解Q雀hy问题要求专门的数值技术,尽管从理论上讲这个问题是唯一可解的.特别是矩阵(方/日x)的本征值“很分散”时,即最大的本征值是最小的儿百倍甚至几千倍,就出现这种情况.这样的微分方程组称为刚俘枣邻s叮s”‘),对应的问题称为刚件。“力y卿覃(s叮CauChy probl~)·刚性系统的一个“源”是偏微分方程(例如通过直线方法)到常微分方程组的转换. 常微分方程的数值方法通常包括一个或数个公式,它们确定在离散点列凡(k=0,1,…)上要找的函数y(x)的关系.这些点的集合称为网格.一般的数值方法以及特别用于微分方程的数值方法,其基础是由L.Euler建立的.解0以为y问题的最简单的方法之一就是以他的名字命名的.这个方法如下.将问题(1)的解展成关于点xk的几尹or级数: (x一x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条