1) Analytical cell
解析胞元
1.
In order to simulate micromechanical damage behavior of heterogeneous materials,the micromechanics model with the consideration of temperature effect near a crack-tip in a composite has been presented by using the method of analytical cells,and the influences of initial defect on mechanical properties of heterogeneous materials were analyzed.
为了较好地模拟非均质材料的细观损伤行为,利用含夹杂与裂尖的解析胞元法建立考虑温度效应的复合材料内部裂尖邻域的细观力学模型,利用该模型分析非均质材料中初始缺陷对材料力学性能的影响。
2) semi-analytical element
半解析元
1.
Based on semi-analytical element method, the three-dimensional tunnel problem is simplified to a one-dimensional numerical calculation model with discretization in the axial direction and displacement functions in both circular and radial directions.
分析了隧道开挖引起的地面沉降利用半解析元法在轴向离散而在环向和径向建立位移函数,从而将三维隧道问题简化为一维数值计算
3) analytical element method
解析元法
1.
Therefore the method is named as analytical element method.
将悬索桥的主缆简化为具有拉伸刚度的质点系,给出了缆索结构2维解析元法的基本方程和求解方法,单元间的作用力与坐标变化的关系可以用解析法得到,对所得到的反映结构特性的质点系方程组进行力的平衡迭代,求解方程组。
5) semi analytical element method
半解析元法
1.
The vibration responses of conical body under complex loads are calculated by utilizing the semi analytical element method of two dimension analysis and one dimension discreteness.
采用二维解析、一维离散的半解析元法,计算了圆锥体(将圆柱体视为其特例)在复杂载荷作用下的振动响应。
补充资料:解析函数元
解析函数元
analytic function, element of an
解析函数元[anai泌c腼由皿,element ofan;知姗郎~“.曰加甫中扒峨u.] 按照某个解析结构给出的复变量z的平面C内的区域D与在D上给定的解析函数f(z)的集合(D,f),这个结构能有效地实现f(z)到它的整个存在区域的解析开拓,形成一个完全解析函数(~Plete analytic funC-tion).解析函数元素最简单和最常用的形式是用幂级数 a0 f(z)=艺e*(z一a广(l) k二0及其中心为a(乖枣的宁J少(Cen‘re of an elemen‘)),收敛半径为R>o的收敛圆盘D={:“C:}:一al
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条