说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 数控铣削加工
1)  NC milling
数控铣削加工
1.
The simulation of multi-axis NC milling process;
多坐标数控铣削加工图形仿真
2.
The reconstructive principle and the designing way of NC milling machine are expatiated by machining a typical cam,so does the parameter conversion.
通过典型凸轮零件的数控铣削加工,阐述铣床数控改造设计的原理和设计的方法,以及在加工编程设计中参数数据的转换。
3.
This paper introduced the programming method of macro program and some problems needing attention in NC milling combined with cases.
通过实例介绍了数控铣削加工中宏程序的编程方法和编程中应注意的问题。
2)  NC milling machining
数控铣削加工
1.
NC milling machining is of importance in the machining process.
在机械加工中,数控铣削加工占有重要的地位。
3)  Milling Simuation
数控铣削加工仿真
4)  3-axis NC Milling Machining
三轴数控铣削加工
1.
Research and Realization of Graphical Simulation Technology in 3-axis NC Milling Machining;
三轴数控铣削加工图形仿真技术的研究与实现
5)  NC Machining of Turning and Milling
车铣削方式的数控加工
6)  milling [英]['mɪlɪŋ]  [美]['mɪlɪŋ]
铣削加工
1.
A Research on Optimized Mill Track in Milling Process and Simulation Based on STEP-NC;
面向STEP-NC铣削加工的刀轨优选与仿真研究
2.
Milling of complicated mould cavity based on UG/NX/CAM;
基于UG/NX/CAM的复杂型腔的铣削加工
3.
Study on milling deformation of aerospace frame monolithic components
航空框类整体结构件铣削加工变形研究
补充资料:模具高速铣削加工技术及其数控编程实例应用
高速加工不但可以成倍地提高生产效率,还可进一步改善零件的加工精度和表面质量,解决一些常规加工中难以解决的某些特殊材料的高效加工问题,因此,高速加工技术在世界上引起了高度重视。本文从机床、刀具、材料及CAM数控编程等方面对高速加工的关键技术进行了阐述,文章最后还给出了两个高速加工的实例。

一、前言


    模具作为模压产品生产的关键工装,其设计与生产周期日益成为决定新产品开发周期的决定因素。目前工业发达国家的航空航天、汽车、机械、模具、机床等行业首先得益于该项新技术,使上述行业的产品质量明显提高,成本大幅度降低,获得了市场竞争优势。在汽车工业中,过去新车型的开发周期一般为10年,现在缩短为2~3年。福特、通用、丰田等公司的新车型开发周期仅为1年半,这一切都得益于企业模具设计与制造手段的现代化水平的提高。高速切削技术逐渐应用于加工铸铁和硬铝合金,尤其是加工大型覆盖件冲压模、锻模、压铸模和注射模,目的是在减少加工时间和研制时间的同时提高尺寸公差和表面一致性。目前国际上高速切削加工技术主要应用于汽车工业、模具行业、航空航天行业,尤其是在加工复杂曲面的领域,工件本身或刀具系统刚性要求较高的加工领域,显示了强大的功能。国内高速切削加工技术的研究与应用始于20世纪90年代,也是主要应用于模具、航空、航天和汽车工业,但采用的高速切削CNC机床、高速切削刀具和CAD/CAM软件等以进口为主。


二、高速切削加工应用的关键技术


    数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。其切削速度、进给速度相对于传统的切削加工,以级数级提高,切削机理也发生了根本的变化。与传统切削加工相比,切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的提高,单位时间毛坯材料的去除率增加,切削时间减少,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件(HRC45~65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,避免了电极的制造和费时的电加工时间,大幅度减少了钳工的打磨与抛光量。一些市场上越来越需要的薄壁模具工件,高速铣削可顺利完成。而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。这些优点在资金回转要求快、交货时间紧急、产品竞争激烈的模具等行业是非常适宜的。


说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条