1) characteristic harmonic
特征谐波
1.
Improvement of characteristic harmonic method in rotational arc sensor
旋转电弧传感器特征谐波法的改进
2.
The method of identifying signals of the seam deviation by the characteristic harmonic detection method is expounded.
介绍了该传感器的结构与工作原理,阐述了采用特征谐波检测法识别焊缝偏差信号的方法。
2) characteristic harmonics
特征谐波
1.
The characteristic harmonics of output voltage on ASVG are cheoretically deduced and analyzed.
设计了一种由可关断晶闸管GTO(GateTurn_off)构成的三极 48脉冲电压源强迫换流器ASVG(AdvancedStaticVarGeneraror)模型 ,从理论上详细推导、分析了由这种三极 48脉冲电压源强迫换流器构成的ASVG输出电压的特征谐波 ;并使用Matlab电力系统仿真工具箱仿真验证了本文提出的ASVG模型及其谐波方法分析的正确性。
4) non-characteristic harmonic
非特征谐波
1.
In order to eliminate the influence of non-characteristic harmonic on power network,the non-characteristic harmonic of high power electrolysis rectifier is simulated by PSCAD/EMTDC.
为了消除非特征谐波对电网造成的影响,利用PSCAD/EMTDC仿真软件对大功率电解整流器的非特征谐波进行仿真分析,并结合实际系统参数及运行情况,分析了由整流器交流侧三相电压不对称以及由晶闸管触发不同步而产生的非特征谐波及其规律,并在此基础上提出了抑制非特征谐波的一些措施。
5) non-characteristic harmonics
非特征谐波
1.
In this paper,thecauses of non-characteristic harmonics are examined through on-site mea-surements and labs experiments;and improvements to reduce the non-charac-teristics in the distribution power supply are also proposed.
本文通过对高阻抗变压器型(TCT型)静止动态无功率补偿装置的现场测试及实验室内同类模型装置的实验测试,验证非特征谐波的产生原因,并针对这些原因提出减少电网非特征谐波的措施。
2.
As a result,converting station may produce a kind of non-characteristic harmonics,when DC transmission is interrupted.
随着高压直流输电的增多及传输容量不断地增大,交流系统强度相对变弱,在直流传输发生扰动时,换流站有可能会产生一种非特征谐波。
3.
The non-characteristic harmonics of a±800 kV UHVDC transmis- sion system are analyzed and calculated with the proposed unified non-characteristic harmonic load flow al- gorithm.
对±800 kV特高压直流输电系统的非特征谐波进行分析可以为特高压换流站交直流侧的滤波器优化设计提供依据,为治理谐波提高电能质量提供参考。
6) harmonic clan feature
谐波族特征
1.
Firstly,the paper studies harmonic clan feature analysis and feature extraction adopting the wavelet packet.
舰船螺旋桨叶片数识别是基于包络谱谐波族特征的目标识别的重要组成部分和主要依据之一,核心任务是特征提取、分析及分类器的设计。
补充资料:偏微分算子的特征值与特征函数
由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
与此密切相关的是下面的MP公式:(t→+0)
取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
。
当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
与此密切相关的是下面的MP公式:(t→+0)
取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
。
当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条