说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 特征波
1)  characteristic wave
特征波
1.
The derivation of eigenvalue problem for characteristic wave number is carried out based on Maxwell equations.
由麦克斯韦方程导出关于特征波的本征值问题,令本征矩阵的行列式为零,得到含参量的四次方程。
2)  characteristic harmonic
特征谐波
1.
Improvement of characteristic harmonic method in rotational arc sensor
旋转电弧传感器特征谐波法的改进
2.
The method of identifying signals of the seam deviation by the characteristic harmonic detection method is expounded.
介绍了该传感器的结构与工作原理,阐述了采用特征谐波检测法识别焊缝偏差信号的方法。
3)  characteristic wavelength
特征波长
1.
In this paper,we adopt stepwise multiple linear regression(SMLR) to select characteristic wavelength of textile fiber,and to research the concentration of the mixture of cotton and terylene.
文章采用逐步多元线性回归来选择面料吸收光谱1300nm~1800nm的特征波长,就棉和涤纶的混合面料进行含量检测研究。
4)  wave field characteristic
波场特征
1.
Physical model experiment of wave field characteristic relating to reservoir fractures;
储层裂隙波场特征物理摸型实验研究
2.
Analysis of the wave field characteristics in random medium based on time-frequency error analysis;
基于时频误差分析法的随机介质波场特征分析
5)  spectral feature
波谱特征
1.
The research progress on the triterpenoids of quinovic acid in recent years was reviewed with respect to plant resource,spectral feature and biological activity.
从植物资源、化合物骨架结构、波谱特征及生物活性等方面,综述了国内外报导的38个喹诺酸类型三萜化合物。
6)  Spectral characteristics
波谱特征
1.
This article systemically summarized the new progress of the research on Angelica polymorpha Maxim ,including chemical constitutes ,biological relations ,spectral characteristics and pharmacological activities.
本文从拐芹的化学成分、生源关系、波谱特征、药理作用进行了系统的综述,为拐芹的深入研究提供信息和借鉴。
2.
In the paper,the spectral characteristics for twenty-eight triterpenoids from medicinal plants of Rubiaceae were summarized.
综述了茜草科常用药用植物中28种三萜类成分的结构及其波谱特征。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条