1) polymer infiltration and pyrolysis
前驱体浸渍裂解
1.
SiC_f/SiC composites were fabricated by a polymer infiltration and pyrolysis process using 2.
5D SiC纤维预制件,通过前驱体浸渍裂解法(PIP法)制备SiC_f/SiC复合材料,通过在第一次浸渍浆料中加入活性Al粉和惰性颗粒SiC粉来提高浸渍效率。
2) precursor infiltration and pyrolysis
先驱体浸渍-裂解
1.
Two composites with a BN-Si_(3)N_(4) matrix reinforced by the two carbon fibers were prepared by precursor infiltration and pyrolysis method,and the mechanical properties and microstructures of the composites were investigated through comparison.
分别以两种碳纤维编织件为增强体,采用先驱体浸渍-裂解(PIP)工艺制备了Cf/BN-Si3N4复合材料,并对其力学性能和微观结构进行分析。
2.
Effects of cycles on the properties of carbon fiber reinforced BN-Si_3N_4 composites prepared by precursor infiltration and pyrolysis;
以自合成的硼吖嗪(borazine)和全氢聚硅氮烷(perhydropolysilazane,PHPS)组成的混杂先驱体为原料,采用先驱体浸渍-裂解(PIP)工艺制备3D C_f/BN-Si_3N_4复合材料,研究了PIP工艺循环次数对复合材料的力学性能和烧蚀性能的影响。
3) precursor infiltration pyrolysis
先驱体浸渍裂解
4) precursor infiltration and pyrolysis
先驱体浸渍裂解
1.
2D Cf/SiC composites were prepared by precursor infiltration and pyrolysis(PIP).
以先驱体浸渍裂解(PIP)工艺制备了2DCf/SiC复合材料,研究了低温裂解工艺(裂解温度低于1000℃)对2DCf/SiC复合材料结构和性能的影响,为Cf/SiC复合材料的低温制备探索可行之路。
2.
WT5BZ]Three-dimensional braided T300 carbon fiber reinforced silicon carbide(3D C_f/SiC) composites were fabricated via polycarbosilane (PCS) precursor infiltration and pyrolysis processing.
以聚碳硅烷先驱体浸渍裂解工艺制备T300碳纤维增强3DCf/SiC复合材料,研究了T300碳纤维预先热处理对材料性能的影响。
3.
Threedimensional braided carbon fiber reinforced silicon carbide(3DB Cf/SiC) composites were fabricated via polycarbosilane (PCS) precursor infiltration and pyrolysis processing assisted by hotpressing.
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-BCf/SiC复合材料,研究了热模压辅助对3D-BCf/SiC复合材料致密度和力学性能的影响。
5) precursor-infiltration-pyrolysis
先驱体浸渍裂解
1.
SiC fillers were introduced into carbon fiber preform by vacuum infiltration in order to shorten the fabrication cycles of three-dimensional braided carbon fiber preform (3D-B C_(f)) reinforced SiC ceramic matrix composites by precursor-infiltration-pyrolysis (PIP).
采用真空浸渍法在碳纤维编织物中预先引入SiC微粉,以缩短先驱体浸渍裂解制备碳纤维三维编织物(3D BCf)增强SiC陶瓷基复合材料的制备周期,考察了微粉粒度、浆料SiC/无水乙醇(EtOH)质量比等参数对引入SiC微粉体积分数的影响。
2.
SiC fillers were introduced into three-dimensional braided carbon fiber preform((3D-BC_f)) by ultrasonic infiltration in order to shorten the fabrication cycles of C_f/SiC composites through precursor-infiltration-pyrolysis (PIP).
为缩短先驱体浸渍裂解制备炭纤维三维编织物(3D-BCf)增强SiC陶瓷基复合材料的工艺周期,在3D-BCf中采用超声浸渍法预先引入SiC微粉。
6) precursor infiltration pyrolysis(PIP)
先驱体浸渍-裂解工艺
补充资料:前驱体配位化合物
分子式:
CAS号:
性质:金属配位化合物的电子传递(迁移)反应过程中第一步形成的物种的统称。配位化合物的电子传递(迁移)反应,不论是内层机理还是外层机理都分为三步:(1)形成前驱配位化合物。(2)前驱配位化合物的活化生成后继配位化合物。(3)后继配化合物分裂为产物如[Co(NH3)5H2O]3+与[Fe(CN)4]4-反应按外层机理进行,参加电子传递的两个配离子通过扩散而穿过溶剂分子相互接近,两者处在溶剂分子所组成的“笼”内,形成前驱配位化合物[{Co(NH3)5(H2O)}3+||{Fe(CN)6}4-。[CoCl(NH3)5]2+与[Cr(H2O)6]2+反应按内层机理进行,两者发生取代,配体桥联成双核配位化合物[(NH3)5CoIII-Cl…CrII·(H2O)5]4+而形成前驱配位化合物。前驱配位化合物必须有适当的稳定性,才有利于电子传递(迁移)。
CAS号:
性质:金属配位化合物的电子传递(迁移)反应过程中第一步形成的物种的统称。配位化合物的电子传递(迁移)反应,不论是内层机理还是外层机理都分为三步:(1)形成前驱配位化合物。(2)前驱配位化合物的活化生成后继配位化合物。(3)后继配化合物分裂为产物如[Co(NH3)5H2O]3+与[Fe(CN)4]4-反应按外层机理进行,参加电子传递的两个配离子通过扩散而穿过溶剂分子相互接近,两者处在溶剂分子所组成的“笼”内,形成前驱配位化合物[{Co(NH3)5(H2O)}3+||{Fe(CN)6}4-。[CoCl(NH3)5]2+与[Cr(H2O)6]2+反应按内层机理进行,两者发生取代,配体桥联成双核配位化合物[(NH3)5CoIII-Cl…CrII·(H2O)5]4+而形成前驱配位化合物。前驱配位化合物必须有适当的稳定性,才有利于电子传递(迁移)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条