1) electron-doped
电子掺杂
1.
Thermodynamic Properties of Electron-doped Cuprate Superconductors;
电子掺杂铜氧化物超导体的热力学特性
2.
Therefore the epitaxial film is most likely an electron-doped colossal magnetoresistance fihn.
X射线光电子能谱(XPS)的结果表明薄膜体系中Pr离子的价态为+4价,因此该薄膜很可能是电子掺杂的庞磁电阻体系。
3.
The valence state of Sb is confirmed to be +5 through x-ray photoelectron spectroscopy,so this compound is an electron-doped colossal magnetoresistance material.
x射线光电子能谱分析证明 ,该氧化物中Sb的价态是 +5价 ,因此该氧化物是一种新的电子掺杂型庞磁电阻材料 。
2) isoelectronic doping
等电子掺杂
3) electron beam implantation machine
电子束掺杂机
4) lightly doped drain,LDD
轻掺杂漏极(电子)
5) ion doping
离子掺杂
1.
From the perspectives of dye photosensitization,positive ion doping,negative ion doping,and new type composite photocatalyst,it investigates the preparation,photocatalysis mechanism,effects and shortcomings of the concerned material.
从染料光敏化、阳离子掺杂、阴离子掺杂及新型复合光催化剂四个方面详细探讨该类复合TiO2的制备方法、催化机理、实际效果和缺点;较系统地介绍可见光化光催化剂的研究现状、成果及前景。
2.
The methods to enhance hydrogen production are reviewed,including addition of sacrificial reagent,addition of sodium carbonate,noble metal loading,metal ion doping,anion doping,dye sensitization,semiconductor composition and ion implantation.
综述了加入牺牲剂、碳酸钠、贵金属负载化、金属离子掺杂、阴离子掺杂、染料光敏化、半导体复合以及离子注入等提高二氧化钛光催化制氢的方法,讨论了这几种改性技术的机理以及对提高二氧化钛在可见光下的制氢效率的作用。
3.
To improve electronic conductivity of LiFePO4 by conductive carbon coating and metal particle or ion doping has b.
通过导电碳包覆及金属或金属离子掺杂等改性方法提高这种材料的电子导电率已成为锂离子电池材料领域的研究热点之一。
6) Doping ion
掺杂离子
1.
Through analysing the making process of the heating type thick film sensors by mixing the ion doping into WO 3 and combining TPD and semiconductor analysis,the effect of the doping ion on the properties of O 3 sensors is studied.
在WO3 中掺入杂质离子 ,制成傍热式厚膜元件 ,结合升温脱附 (TPD)和半导体分析 ,研究了掺杂离子对元件性能的影
补充资料:等电子掺杂(isoelectronicdoping)
等电子掺杂(isoelectronicdoping)
与被替代的基体原子具有相同价电子结构的替代原子的掺杂。等电子杂质虽然是电中性的,但由于其原子半径及电负性与被替代原子不同,因此产生的短程势起陷阱作用,能俘获电子(空穴),并成为负电或正电中心而吸引一个空穴(电子),形成束缚激子。相邻的等电子中心成对地相互作用,形成一系列束缚激子能级。在某些半导体材料中掺入等电子杂质,由于束缚于等电子陷阱的束缚激子是局域化的,因而使辐射复合的概率增大,发光效率有较大增加。这一原理在GaP和GaAsP发光二极管中已广泛使用。等电子掺杂有利于提高发光效率的另一个原因是等电子陷阱束缚的激子仅包含一个电子和一个空穴,因此复合时不会产生俄歇(Auger)过程(一种非辐射复合过程)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条