说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 圆柱绕流
1)  flow around a circular cylinder
圆柱绕流
1.
Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder;
圆柱绕流的流场特性及涡脱落规律研究
2.
Simulation of vortex induced vibration of turbulent flow around a circular cylinder by plane turbulent models;
圆柱绕流涡致振动的平面湍流数值模拟
3.
In order to test the accuracy and resolution of complex vortex by particle image veloci- metry(PIV) ,velocity fields of poisoeulie flow and flow around a circular cylinder were measured.
为了考察粒子图像速度场仪 (PIV )的测量精度及分辨复杂流动结构的能力 ,对泊肃叶流动和圆柱绕流两种典型流动进行了测量 。
2)  flow around circular cylinder
圆柱绕流
1.
In this paper,DES method based on Menter s k-ω SST two-equation turbulence model is used to simulate the incompressible viscous flow around circular cylinder.
采用基于Menterk-ωSST两方程湍流模型的DES方法对粘性不可压缩流体的圆柱绕流问题进行数值模拟,通过对所得的速度场、压力场、阻力系数、升力系数、斯特罗哈数St等结果的分析及与文献上的实验和计算数据的比较,说明DES方法对于低雷诺数及高亚临界雷诺数的圆柱湍流流动是合理的。
3)  flow past a circular cylinder
圆柱绕流
1.
In this paper,the subsonic flow past a circular cylinder is solved by using hybrid perturbation-Galerkin method and symbolic computation.
本文采用摄动伽辽金(Galerkin)杂交方法,应用计算机代数与符号运算术解亚声速圆柱绕流
2.
The steady cross-flow past a circular cylinder in the low Reynolds numbers was investigated using non-equilibrium molecular dynamics simulations with the Lennard-Jones potential.
采用非平衡分子动力学模拟方法,对微尺度低Re数下的圆柱绕流问题进行了研究,模拟结果表明:当Re<12时,圆柱下游形成对称、无分离的定常流;当Re>20时,圆柱下游形成周期性交替出现的对称涡;当12
3.
The control of flow past a circular cylinder with electrodes and magnetics mountedalternately on its forces had been investigated both experimentally and numerically.
本文分别从实验和数值模拟两个方面对弱导电介质中圆柱绕流的电磁控制过程进行了研究。
4)  cylinder wake
圆柱绕流
1.
Based on the equations of magnetic and electric fields and the formula of the flow, the distribution of Lorentz force and its control effect on cylinder wake flow have been investigated numerically in the electro-magnetic fields formed by a moving low-conducting electrolyte.
基于电磁场和流体的基本方程,对置于弱电介质中的圆柱电磁激活板周围产生的Lorentz力及其对圆柱绕流的控制进行了数值模拟,着重讨论了电磁激活板的宽度对其周围的电磁场、产生的Lorentz力、流场的控制和涡量变化的影响。
2.
Electromagnetic control of cylinder wake and its optimality has been investigated in the present thesis.
本文主要从以下几个方面对电磁流体控制进行了研究,首先设计与研制了电极脉冲控制系统,为电磁优化控制提供可靠的实验平台;然后基于简化的Maxwell方程对圆柱表面定常的电磁场与Lorentz力分布进行了数值模拟,为电磁优化控制提供基础;最后基于优化控制理论对圆柱绕流进行了优化控制模拟。
3.
In this paper, the experimental and numerical investigations on electro-magnetic control of cylinder wake have been performed in this paper.
本文对均匀来流和剪切来流条件下,圆柱绕流及其电磁控制进行了实验和数值研究。
5)  circular cylinder
圆柱绕流
1.
Numerical simulation on suppression of vortex shedding around the circular cylinder with O-rings;
利用O型环抑制圆柱绕流涡脱落的数值研究
2.
Two dimensional particle image velocimetry system is used to investigate effects of the dielectric barrier discharge plasma on the flow field in the wake of circular cylinder cross flow.
利用二维粒子图像测速系统研究了低速风洞实验中介质阻挡放电等离子体对圆柱绕流尾迹区流场的影响。
3.
A uniform viscous and incompressible flow around a circular cylinder was numerically simulated.
利用计算流体力学软件 CFX- 4,对粘性不可压缩流体的圆柱绕流进行了三维数值模拟 ,采用有限体积法和 SIMPLE计算程式 ,利用不可压缩 Navier- Stokes方程 ,模拟雷诺数在亚临界区内的绕流流动 ,并计算了流体的水动力特性 。
6)  fluid flow around a cylinder
绕圆柱流
补充资料:绕流
      流体绕过置于无限流体中的物体的流动,或物体在无限流体中运动,是自然界和工程中常见的粘性流体流动形式。由于物体被流动流体所包围,常称为流动的外部问题。空气绕过机翼,水流绕过桥墩,船舶在海洋中航行,流体掠过换热管束,颗粒和液滴在气流中沉降,均属此类流动。
  
  圆柱绕流特性  流体绕过物体流动时,流动特性因流体物理性质、物体形状和尺寸以及绕流速度等因素而有显著差异。典型的绕流是绕过长圆柱体的流动。在低雷诺数(例如Re<1时,这里Re=ud/v;u为来流速度;d为圆柱直径;v为流体运动粘度)的条件下,流动的主要特点是上下游速度分布对称(图1),柱体影响流动所及的区域较广。
  
  在中等雷诺数的条件下,上下游流速分布的对称性消失,绕圆柱附近流动的流体,在达到边缘中心点A之前离开圆柱,在圆柱体后面出现两个附着涡(图2),涡内流体不断循环,在一定条件下(如100>Re>40),圆柱两侧交替地发生旋涡发射,即在圆柱后的每一侧出现一排旋涡(图3),称为卡门涡街,这种交替发生的旋涡,导致周期性横向力的产生,迫使柱体振动。例如大气绕过高烟囱和高塔设备流动时,就会使其发生振动,并有可能造成危险。
  
  在高雷诺数(Re>100)的条件下,柱体对绕流的影响限于表面附近的边界层中。此处速度梯度很大,粘性摩擦很显著。边界层之外,流体流速大体上即为来流速度,无速度梯度,粘性摩擦可以忽略。柱面上形成边界层后,在下游某处可能与柱面分离。当Re<3×105时,边界层内流体作层流流动,此为层流边界层;当Re>3×105时,边界层内的流动状态为湍流,湍流边界层的分离点向后移动。
  
  绕流的速度分布  绕流时的速度分布,原则上可由运动方程计算,但由于非线性方程难以求解,须依照具体情况作出简化。对于绕圆球的流动,当Re<1时,速度分布可用下列方程表示:
  
   
  
   
  
   式中u0为沿x方向的来流速度;ux、uy和uz各为x、y和z方向的速度分量;R为球的半径;r为离开坐标原点的距离;r2=x2+y2+z2。当Re值较大时,可用边界层理论近似处理。
  
  绕平板流动时层流边界层中的速度分布的精确解方程很复杂,可在无因次坐标图上表示(图4)。纵坐标中u为点速度;x是距平板前缘的距离;y是距平板的垂直距离。ρ和μ分别为流体的密度和粘度。湍流边界层中的速度分布亦可用管流时的幂指数形式或对数形式表示,但相应的常数略有不同。
  
  阻力定律  绕流的流动阻力包括摩擦阻力和压差阻力,其相对大小因物体形状、运动速度等因素而有差异。若被绕物体的几何形状比较简单,阻力可由边界层理论算出;当物体形状复杂时,阻力通常依靠实验测定,实验结果用阻力系数与雷诺数的关系表述。
  
  绕平板流动的摩擦阻力F、阻力系数Cd在层流时为:
  
    在湍流时则为:  F=0.036ρu2bl(u0lρ/u)-1/5,Cd=0.074Re-1/5式中b和l分别为平板的宽度和长度。
  
  绕球体作层流流动(Re<1)时,阻力可根据斯托克斯定律(1851年英国G.G.斯托克斯关于颗粒在流体中运动阻力)计算,即:
  
  
  
  
    F=3πμdu式中d为球的直径。从这定律换算得出的阻力系数为:
  
  
  
  
    Cd=24Re-1
  
  在高雷诺数(500<Re<2×105)时,阻力系数近似地为常数,阻力正比于速度的平方。在雷诺数更高时(Re>3×106),阻力系数急剧降低(图5),这是由于边界层湍流化,分离点后移,尾涡区缩小,因而使压差阻力大为降低。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条