说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 横向双圆柱绕流
1)  tandem circular cylinder pairs
横向双圆柱绕流
2)  flow over two circular cylinders
双圆柱绕流
3)  flow over circular cylinders in tandem arrangement
串列双圆柱绕流
4)  two side-by-side circular cylinders
横向排列双圆柱
1.
Numerical simulation of flow around two side-by-side circular cylinders at low Reynolds numbers by a POD-Galerkin spectral method
低Reynolds数横向排列双圆柱绕流的POD-Galerkin谱方法数值模拟
5)  flow around a circular cylinder
圆柱绕流
1.
Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder;
圆柱绕流的流场特性及涡脱落规律研究
2.
Simulation of vortex induced vibration of turbulent flow around a circular cylinder by plane turbulent models;
圆柱绕流涡致振动的平面湍流数值模拟
3.
In order to test the accuracy and resolution of complex vortex by particle image veloci- metry(PIV) ,velocity fields of poisoeulie flow and flow around a circular cylinder were measured.
为了考察粒子图像速度场仪 (PIV )的测量精度及分辨复杂流动结构的能力 ,对泊肃叶流动和圆柱绕流两种典型流动进行了测量 。
6)  circular cylinder
圆柱绕流
1.
Numerical simulation on suppression of vortex shedding around the circular cylinder with O-rings;
利用O型环抑制圆柱绕流涡脱落的数值研究
2.
Two dimensional particle image velocimetry system is used to investigate effects of the dielectric barrier discharge plasma on the flow field in the wake of circular cylinder cross flow.
利用二维粒子图像测速系统研究了低速风洞实验中介质阻挡放电等离子体对圆柱绕流尾迹区流场的影响。
3.
A uniform viscous and incompressible flow around a circular cylinder was numerically simulated.
利用计算流体力学软件 CFX- 4,对粘性不可压缩流体的圆柱绕流进行了三维数值模拟 ,采用有限体积法和 SIMPLE计算程式 ,利用不可压缩 Navier- Stokes方程 ,模拟雷诺数在亚临界区内的绕流流动 ,并计算了流体的水动力特性 。
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)

垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:

$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$

$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$

这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则

H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。

若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条