1) rail joint end
钢轨接口
2) rail welding
钢轨焊接
3) rail joint
钢轨接头
1.
Dynamic computational model of vehicle/track vertical coupling system is developed by means of finite element method for analyzing the effects of joint gap value and running speed on the vibration caused when the vehicle passing a rail joint.
为了分析轨缝值与行车速度对车辆通过钢轨接头时产生的振动与噪声的影响程度,利用有限元方法,建立了车辆—轨道垂向耦合动力计算模型;该模型的车辆采用整车模型,共10个自由度;轨道结构采用3层弹性点支承有限长欧拉梁模型,共402个自由度;系统的激励大小可由轨缝值和行车速度推导出来,并运用赫兹非线性接触理论计算轮轨之间的相互作用力。
2.
A three dimensional calculation model of rail joint is proposed using finite element software ANSYS.
利用有限元软件ANSYS建立了钢轨接头的三维计算模型,分析了螺栓转矩变化对接头区钢轨应力、接头夹板应力和螺栓应力的影响。
3.
Using this model, the dynamic responses of the rail joints are calculated, which provides the theoretical basis for raising speed of Jing Jiu Railway.
运用该模型 ,对不同列车速度条件下钢轨接头的动力响应进行了计算 ,为京九线路的提速提供了理论依据。
5) rail connection
钢轨连接
6) rail joints
轨道接口
补充资料:钢轨
铁路轨道的基本承重结构,用于引导机车车辆行驶,并将所承受的荷载传布于轨枕、道床及路基,同时为车轮的滚动提供最小阻力的接触面。钢轨要求有足够的承载能力、抗弯强度、断裂韧性、稳定性及耐腐性能。20世纪80年代,世界各国铁路,除英国部分铁路铺设双头钢轨外,均铺设工字形截面钢轨。它由轨头、轧腰和轨底三部分组成。
类型 钢轨按每米大致重量(公斤/米)区分类型,英制国家则仍沿用每码磅数的区分方法。各国钢轨主要类型见表。
重型钢轨适用于运量大、速度高及行驶重载车辆的铁路;轻型钢轨则用于运量较小的铁路及站线上。在大运量铁路上铺设重型钢轨,可以减少养护维修费用,并可降低行车阻力,节约燃料。根据使用需要,钢轨应有一定的标准长度。中国、苏联等国家规定为25米及12.5米;美国规定为78英尺及39英尺(相当于23.774米及11.887米)。
材质 钢轨的强度、耐磨性以及抵抗冲击的能力,在很大程度上取决于钢轨的材质,也就是取决于钢材的化学成分、金相组织、生产工艺和热处理质量。钢轨的化学成分,除含铁外,还含有碳、锰、硅、硫和磷等。含碳量高,可增加钢轨的强度,但含碳过高,将使其塑性及冲击韧性降低。适当提高锰和硅的含量,能增加钢轨的强度、硬度和韧性。硫和磷是有害杂质,不容许超过规定的限度。此外,在钢轨中加入适量的铬、镍、钼、钒、钛或铜等元素制成合金钢轨,可提高钢轨的质量。中国自70年代起已生产含稀土、低锰、中硅及含钛、含铜等低合金钢轨。为提高轨端部分的抗磨性能,防止压陷,保证钢轨全长磨耗均匀,通常在钢轨的两端进行轨面淬火,以提高其硬度;全长淬火,钢轨使用效果更好。
钢轨伤损 钢轨作为一根支承在连续弹性基础上的无限长梁,主要承受来自机车车辆的集中垂直荷载,在其断面上产生一定的弯矩。钢轨由于断面抗弯强度不足而损坏的事例较少。钢轨更换的主要原因是磨耗和疲劳伤损。钢轨的磨耗在直线及曲线上有不同形式和程度上的表现。直线上主要为接头部分的鞍形磨耗。曲线上主要为外股钢轨的侧面磨耗、内股钢轨的头部压溃和波形磨耗,而在小半径曲线上更显得特别严重。钢轨疲劳伤损的主要表现是核伤。它起源于轨头内部存在的细小裂纹。随着机车车辆通过时轨头内部出现极为复杂的应力组合,使这一细小裂纹先是成核,然后再向轨头四周发展,最后则在无预兆下猝然折断,引起后果十分严重的行车事故。
钢轨伤损的防止措施 减少曲线钢轨磨耗的主要措施在于改进机车车辆转向架的设计,借以改善轮轨间的相互作用条件,减少彼此间的摩擦。作为治标措施,可采用曲线钢轨侧面涂油或在小半径曲线上铺设耐磨性能高的特种合金钢轨。防止核伤的最有效方法是对钢料进行控制性冷却,避免钢轨内部因氢气逸出而产生的细小裂纹,从而根本消灭了产生核伤的疲劳源。但是,尽管采取各种预防措施,钢轨核伤仍无法绝对避免。为确保行车安全,必须进行定期的钢轨探伤,以便及时消除隐患,避免发生重大行车事故。
类型 钢轨按每米大致重量(公斤/米)区分类型,英制国家则仍沿用每码磅数的区分方法。各国钢轨主要类型见表。
重型钢轨适用于运量大、速度高及行驶重载车辆的铁路;轻型钢轨则用于运量较小的铁路及站线上。在大运量铁路上铺设重型钢轨,可以减少养护维修费用,并可降低行车阻力,节约燃料。根据使用需要,钢轨应有一定的标准长度。中国、苏联等国家规定为25米及12.5米;美国规定为78英尺及39英尺(相当于23.774米及11.887米)。
材质 钢轨的强度、耐磨性以及抵抗冲击的能力,在很大程度上取决于钢轨的材质,也就是取决于钢材的化学成分、金相组织、生产工艺和热处理质量。钢轨的化学成分,除含铁外,还含有碳、锰、硅、硫和磷等。含碳量高,可增加钢轨的强度,但含碳过高,将使其塑性及冲击韧性降低。适当提高锰和硅的含量,能增加钢轨的强度、硬度和韧性。硫和磷是有害杂质,不容许超过规定的限度。此外,在钢轨中加入适量的铬、镍、钼、钒、钛或铜等元素制成合金钢轨,可提高钢轨的质量。中国自70年代起已生产含稀土、低锰、中硅及含钛、含铜等低合金钢轨。为提高轨端部分的抗磨性能,防止压陷,保证钢轨全长磨耗均匀,通常在钢轨的两端进行轨面淬火,以提高其硬度;全长淬火,钢轨使用效果更好。
钢轨伤损 钢轨作为一根支承在连续弹性基础上的无限长梁,主要承受来自机车车辆的集中垂直荷载,在其断面上产生一定的弯矩。钢轨由于断面抗弯强度不足而损坏的事例较少。钢轨更换的主要原因是磨耗和疲劳伤损。钢轨的磨耗在直线及曲线上有不同形式和程度上的表现。直线上主要为接头部分的鞍形磨耗。曲线上主要为外股钢轨的侧面磨耗、内股钢轨的头部压溃和波形磨耗,而在小半径曲线上更显得特别严重。钢轨疲劳伤损的主要表现是核伤。它起源于轨头内部存在的细小裂纹。随着机车车辆通过时轨头内部出现极为复杂的应力组合,使这一细小裂纹先是成核,然后再向轨头四周发展,最后则在无预兆下猝然折断,引起后果十分严重的行车事故。
钢轨伤损的防止措施 减少曲线钢轨磨耗的主要措施在于改进机车车辆转向架的设计,借以改善轮轨间的相互作用条件,减少彼此间的摩擦。作为治标措施,可采用曲线钢轨侧面涂油或在小半径曲线上铺设耐磨性能高的特种合金钢轨。防止核伤的最有效方法是对钢料进行控制性冷却,避免钢轨内部因氢气逸出而产生的细小裂纹,从而根本消灭了产生核伤的疲劳源。但是,尽管采取各种预防措施,钢轨核伤仍无法绝对避免。为确保行车安全,必须进行定期的钢轨探伤,以便及时消除隐患,避免发生重大行车事故。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条