1) asymptotic homogenization
渐近均匀化方法
1.
Based on the asymptotic homogenization,the periodic boundary conditions for the unit cell are established by using the ANSYS Parametric Design Language,the problem of the unit cell is solved by finite element method and the effective elasto-plastic properties of the composite is obtained,which is compared with other results.
在渐近均匀化方法的基础上,用ANSYS参数设计语言建立周期性边界条件,用ANSYS有限元程序对单胞进行求解,得到材料的有效弹塑性性能。
2.
Based on the asymptotic homogenization, the periodic boundary conditions for the unit cell of composites are established using the ANSYS parametric design.
在渐近均匀化方法的基础上,用ANSYS参数设计语言建立了周期性边界条件,用ANSYS有限元程序对单胞进行求解,得到了复合材料的有效性能。
3.
Based on the asymptotic homogenization method a global three-dimensional constitutive relation for viscoelastic FRC was formulated.
通过渐近均匀化方法给出了预测FRC整体三维本构关系的解析表达式。
2) asymptotic homogenization theory
渐近均匀化理论
1.
There are two basic theories in continuum micromechanics for obtaining the effective properties of a heterogeneous medium based on the information of the microstructures, the average-field theory and the asymptotic homogenization theory.
在连续介质微观力学中,有两类基于微结构信息确定非匀质介质有效性能的基本理论:基于物理的平均场理论和基于数学的渐近均匀化理论。
3) asymptotic uniformity
渐近均匀性
4) homogenization method
均匀化方法
1.
Application of homogenization method to FEM structural analysis of bag filter tubesheet;
均匀化方法在大型袋式除尘器花板结构计算中的应用
2.
Mixed homogenization method for effective properties of laminated composites;
求解复合材料等效性能的混合均匀化方法
3.
The necessity of improvement for the current LWR fuel assembly homogenization method;
改进现行轻水堆组件均匀化方法的必要性
5) homogenization
[,həʊmədʒənaɪ'zeɪʃən]
均匀化方法
1.
Application of homogenization theory to viscoelastic multilayered composites;
均匀化方法在粘弹性多层复合材料中的应用
2.
Based on the homogenization method, the equivalent elastic modulus of jointed rock is studied.
假定节理岩体具有均质的宏观结构和非均质的周期性分布的细观结构,利用均匀化方法,根据材料周期性特点,通过摄动理论建立依赖于两尺度坐标变量而变化的渐进位移场,推导出反映节理岩体细观结构的控制方程,并结合有限元法,数值模拟得到其宏观等效弹性模量。
3.
Secondly, the author would like to introduce homogenization method and multi-scale asymptotic analysis methods proposed and developed by Professor CUI Junzhi (member of CAE),the author and many scientists in the world for the crucial problems on the structures and engineering of composite materials.
然后介绍我与崔俊芝院士及国内外其他学者针对复相材料结构与工程中重要问题 ,建立和发展的均匀化方法和多尺度渐近分析方法 ,重点介绍其基本思想、主要结果、存在的问题以及在材料与工程中的应用。
6) Asymptotically Fourier Reduction Method
渐近Fourier约化方法
补充资料:渐近密度
渐近密度
asymptotic density
撇毗{as卿p咖。山”血,;一彻。~卜‘仔二称渐近守宁 自然数的数列的密度(densit),of a sequen代)这一普遍概念的一种变形,用以度量全体自然数序列中有多大的部分属于给定的包含零在内的自然数序列A.序列A的渐近密度(asymPtot,e density)用实数,表示,由公式 ‘,l‘m‘nf一二立之 日卜汇军定义,这甲 州、)乏{.、于i a李数 刀俪、。p五旦 t,艺飞通常称为上渐近密度(up详r asymPtotie density).如果数,和夕重合,那么它们的共同值称为自然密度(n at盯a] density).例如,无平方因子数的序列具有自然密度b二6/二2.渐近密度的概念被用来寻找判别某序列是渐近基(asynlptotie basis)的准则. E_M.E详姚姗撰[补注】上面定义的数仪也称为下渐近密度(陌wefasymPtotic density).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条