1) AMSE(asymptotic mean squared error)
渐近均方误
2) asymptotic homogenization
渐近均匀化方法
1.
Based on the asymptotic homogenization,the periodic boundary conditions for the unit cell are established by using the ANSYS Parametric Design Language,the problem of the unit cell is solved by finite element method and the effective elasto-plastic properties of the composite is obtained,which is compared with other results.
在渐近均匀化方法的基础上,用ANSYS参数设计语言建立周期性边界条件,用ANSYS有限元程序对单胞进行求解,得到材料的有效弹塑性性能。
2.
Based on the asymptotic homogenization, the periodic boundary conditions for the unit cell of composites are established using the ANSYS parametric design.
在渐近均匀化方法的基础上,用ANSYS参数设计语言建立了周期性边界条件,用ANSYS有限元程序对单胞进行求解,得到了复合材料的有效性能。
3.
Based on the asymptotic homogenization method a global three-dimensional constitutive relation for viscoelastic FRC was formulated.
通过渐近均匀化方法给出了预测FRC整体三维本构关系的解析表达式。
3) mean_square asymptotic convergence
均方渐近收敛性
4) the mean square asymptotic stability
均方渐近稳定
1.
Sufficient conditions of the mean square exponential stability or the mean square asymptotic stability of 2 dimension common systems are given.
利用构造二次型 Lyapunov函数和 Ito公式研究了一般 n维时变线性 Ito型随机微分系统的稳定性 ,给出了二维时变线性系统的三种常见情形的均方指数稳定或均方渐近稳定的充分判据 。
5) mean square asymptotic stability
均方渐近稳定性
1.
Both reachability and mean square asymptotic stability of sliding modes constructed in the present paper are proved.
对互连项满足匹配条件的随机大系统首次建立了利用变结构控制的分散镇定方法,并证明了所构造的滑动流形的可达性和均方渐近稳定性。
6) asymptotic error
渐近误差
1.
(x) there is a convergence velocity with both uniform asymptotic error and mean square meaning on condition that P (x) is smooth at every interval within a finite section and that the operational calculus function G (y) is at a relatively rapid speed when approximating zero (when
只要P(x)在每一有限区间内逐段光滑,且P(x)的运算微积函数G(y)趋于零的速度较快(时),则Pn(x)便有一致渐近误差和一致均方意义下的收敛速度。
补充资料:渐近公式
渐近公式
asymptotic formula
渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条