1) nonlinear partial differential equation
非线性偏微分方程
1.
Classification of Bcklund transformations among second-order nonlinear partial differential equations;
二阶非线性偏微分方程之间Bcklund变换的分类
2.
Based on the Homogeneous Balance Method,four methods to find exact traveling wave solutions of nonlinear partial differential equations are proposed by using trigonometric functions,hyperbolic functions and Mathematica software.
基于齐次平衡法的思想,借助数学软件"Mathematia",利用三角函数、双曲函数和吴消元法建立了四种寻找非线性偏微分方程行波解的方法,方法的基本原理是通过一些特殊的变换,将求方程行波解的问题转化为求代数方程的解问题,并且以复合KdV方程作为例子,介绍了方法及其步骤。
3.
By utilizing the trial function method, a class of nonlinear partial differential equations (PDEs for short) that are hard to be solved by the usual ways can be reduced to a set of algebraic equations, which can be easily solved, and their related coefficients can be easily determined by the undetermined coefficients method.
利用试探函数法,将一个难于求解的非线性偏微分方程化为一个易于求解的代数方程,然后用待定系数法确定相应的常数,简洁地求得了一类非线性偏微分方程的精确解。
2) Nonlinear partial differential equations
非线性偏微分方程
1.
A simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations;
求一类非线性偏微分方程解析解的一种简洁方法
2.
This method can also be used to solve other nonlinear partial differential equations.
引入一个变换,将二阶非线性偏微分方程—Burgers方程降阶为一阶的非线性方程,再直接求解该方程,得出了Burgers方程精确解的新形式,并与已有结果完全吻合。
3.
Recently, the LBM have been developed to simulate linear and nonlinear partial differential equations (NPDEs).
近年来,LBM在模拟线性和非线性偏微分方程方面取得了重要进展,但是理论部分仍有许多问题有待完善,例如如何构造出精度较高的模型和如何模拟更复杂的非线性偏微分方程。
5) nonlinear system of partial differential equations
非线性偏微分微方程组
补充资料:非线性偏微分方程
非线性偏微分方程
noil-linear partial differential equation
非线性偏微分方程【咖J.翻r,而I山价拍函坛la甲.d阅;He翻e面.oeyP姗e皿ec,aC几。,nPO,3的月”曰M一」 一个形如 F(x,u,…,D“u)“0(1)的方程,其中x=(x.,…,x。)任R“,u=(“:,一,“。)〔R’,F=(F,,一,F*)‘R“,:=(:.,…,:。)是由非负整数:,,…,:。组成的一个多重指标,D’二D寸‘二D二·,D‘=a/刁x‘(泛=1,…,。).在复值函数的情形下,可类似地定义非线性偏微分方程.若k>1,通常称为向量的非线性偏微分方程或非线性偏微分方程组.方程中出现的最高阶导数的阶数称为(l)的阶. 最为熟知的一个非线性方程是M加犯e.All妙耽方程(M。刀罗一Am乒re叫Ua石on)}口2,J}石‘_、a Zu detl二竺竺一!十)A .fx,“,Du)下‘-于一一+ 一’}口‘.刁‘,}i,仁,‘一‘,、‘”一’一’口x;刁xj +B(x,u,Du)‘0;(2)此处及以下,Du二(D、u,二‘,D。u), 若k=阴且F关于最高阶数所对应的变量是可微的,方程(l)的类型由F关于这些导数的主要线性部分的类型所定义(见偏微分方程(山玉沈n往目闪叩-tion,paJ石al)).对于相应的变量的导数(或由微分运算所产生的导数),一般地,人们相应地赋予一个确定的权.例如,在非线性热传导方程中, 。。,「。。刁,ul 一二,-=1 IX,。X。U—.一.丁--布,l, 口x.一L一口xZ口x三」此处日f/日pZ:>o,尸2:拱口’u/刁x{,则导数刁f/ap之:有权为2. 因为(l)关于最高阶导数的线性化是在一个固定解的邻域内进行的,(l)的类型将可能依赖于这个解(对照线性方程,甚至在一固定点x处).例如,方程 单华+旦兰生一旦生一f(二二二,、(3、 日x{口x左刁x:在具日“/口x:>o的解。处为椭圆型的,而在具口u/刁x:<0的解“处则为双曲型的. 一个方程的类型决定了此方程的边值(混合)间题是否适定以及影响研究它们的方法. 若函数F线性地依赖于它的最高阶导数,则(1)称为拟线性方程(q班‘i一恤份r闪Uat10n).例如,(3)是拟线性的.否则,方程称为是本质非线性方程(邸cnt访lly non七lx分r叫m石on).例如,Mo卿一内np-吮方程(2)是本质非线性的. 若一个拟线性方程的最高阶导数的系数不依赖于解(或它的导数),则方程称为弱非线性方程(w戈月ynon刁11长以r叫Uation)、例如,方程 A“=f(x,“,D“)(4)是弱非线性的. 拟线性和弱非线性偏微分方程之间的区分是承担了一个有条件的特性而不反映方程的内在性质.弱非线性方程可能有较拟线性甚至本质非线性方程更强的非线性性质.例如,存在形如(4)的弱非线性方程,它的在一有界区域内的一个给定的D州ehlet问题有可数多个不同的解. 形如(1)的方程可在全空间R”内考虑,或者在它的某一子域内研究.在第一种情形下,解空间的定义含有在无穷远处解的性态的条件.而在区域的情形下,人们在边界上或其一部分上提一个或更多的边界条件.这些边界条件同样可含有非线性算子.一个非线性偏微分方程连同一个边界条件(或一些边界条件)一起形成一个非线性问题,此问题必须在一个适当的函数空间内讨论.这个解空间的选取由该区域内的非线性微分算子F及边界算子的结构所决定.一个非线性问题的解空间的选取对问题的讨论是一个本质的因素.例如,对如下非线性问题:在有界区域oc=R”内,,。落。(一‘)”,”‘(,”‘ul’一’sgn”“U)一f(x),p>‘, 在边界刁。上,D尹u:oO,1刀l蕊m一1,此问题对应于C以沁J记B空间W叹Q).对于其对偶空间评子“(。)二(评了(。))’,q一’千p一’=1中任一函数f,。此问题在心(川内有唯一的解·此处及以下,W誉(。)是所有在Q内无限次可微且有紧支集的函数所成的集合在。石叨eB空间W君(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条