1) roadway excavation
巷道掘进
1.
The blasting hole arrangement of hard ductility rocks in the roadway excavation is discussed and explosive loading coefficient is determined.
介绍了该矿传统掘进凿岩爆破方法,详细阐述了该矿硬韧性岩的巷道掘进炮眼布设及装药系数的确定。
2.
Study on the roadway excavation rapidly in the low permeability outburst coal seam;
针对在低透气性突出煤层巷道掘进过程中,煤与瓦斯突出综合检测指标经常超限,掘进速度缓慢等问题,提出了深孔预裂控制爆破和巷帮钻孔边抽边掘相结合的综合防突技术,研究了深孔预裂控制爆破技术的作用机理,阐述了深孔预裂控制爆破技术的工艺流程和巷帮钻孔的布置参数。
2) tunneling
[英]['tʌnəlɪŋ] [美]['tʌnəlɪŋ]
巷道掘进
1.
Research on Effect of Rockmass Joints and Fissures on Blasting in Tunneling and Its Practice;
岩体节理裂隙对巷道掘进爆破影响的研究与实践
2.
Development of tunneling blasting expert system;
巷道掘进爆破专家系统研究开发
3.
Application of the technique of pentagon hollow cutting-in in tunneling;
五角空心掏槽技术在巷道掘进中的应用
3) tunnel excavation
巷道掘进
1.
First the distribution laws of stress fields in the course of mine tunnel excavation are simulated by means of FLAC3D software,and the stress value in each unit is obtained.
首先通过FLAC3D软件对矿山巷道掘进过程中煤岩内部应力场分布规律进行了数值模拟,并提取了各个单元的应力值;然后根据数值模拟应力值和煤岩受压变形破裂过程中产生的电磁辐射(EME)强度与煤岩内部应力之间的力电耦合关系式研究了巷道掘进过程中产生的电磁辐射信号变化规律。
2.
In this paper, the principle of surpersonic reflection is introduced briefly,it is emphasized the method that the features of rocks can be tested on_site by setting up the observation system of supersonic reflection in tunnel excavation and calculating the supersonic speed with the time graphs of reflected waves.
简述了超声波反射法的机理 ,介绍了在采矿掘进中建立超声波反射法的观测系统和用反射波相遇时距曲线法求超声波的速度 ,从而探测出巷道掘进所处位置上岩体特性的方
3.
The distribution laws of stress fields in the course of mine tunnel excavation are simulated by means of FLAC2D software.
通过FLAC2D模拟了矿山巷道掘进过程中煤岩内部应力场的分布规律;根据提取的模拟计算应力值和煤岩受压变形破裂过程中产生的电磁辐射强度与煤岩内部应力之间的力电耦合关系式,对巷道掘进过程中产生的电磁辐射信号变化规律进行了研究。
4) Drifting
[英][drift] [美][drɪft]
巷道掘进
1.
Using common powder charge structure makes larger vibration damage to the surrounding rock when drifting, and it needs higher requirements to tunnel support which leads to higher final cost.
巷道掘进过程中采用普通装药结构对围岩振动损伤较大,导致对巷道支护要求高,支护成本增大;同时爆生气体温度较高,容易引起瓦斯和煤尘爆炸。
5) Tunnelling
['tʌnəliŋ]
巷道掘进
1.
Application of Smooth Blasting Technology for Soft Rock Tunnelling;
光面爆破技术在软岩巷道掘进中的应用
2.
In association with the blasting practice of the mine field, the empirical formula of explosive loading factor and the total number of blast hole is simplified in order to provide the experience of tunnelling.
文中引用巷道掘进中炸药单耗与布孔总数的经验计算公式,结合所在矿区的爆破实践,对经验式进行了简化,为巷道掘进提供了经验。
补充资料:采区巷道布置
用地下开采法采煤时,往往将开采水平沿走向划分为若干采区,作为矿井生产的基本单元。在采区范围内开掘一系列巷道,建立完整的采掘、运输、通风、供电和排水等生产系统,以保证正常生产。
缓倾斜煤层和倾斜煤层采区上山准备方式 矿井开掘出水平大巷后,一般沿煤层走向,每隔800~2500m开掘上山(见矿山井巷),将煤层划分采区,分区开采。典型的布置方式有两种:
采区单层布置 在开采薄及中厚煤层时,将每个煤层单独开采,在煤层或底板岩石内布置一个完整的生产系统。
在采区内通常开掘两条上山:①输送机上山,用于运煤、行人、回风;②轨道上山,用于运料、下放矸石、进风。必要时另开一条运人和通风上山。从上山向两侧开掘区段平巷,在区段平巷末端开掘切割眼,形成回采工作面(见煤回采工艺)。采出的煤经区段运输平巷及输送机上山,运至采区煤仓装车外运。新鲜空气由运输大巷经轨道上山和区段巷道进入工作面;回风由采区回风巷流出。
采区联合布置 60年代以来,随着机械化水平的提高,为减少巷道工程量和实行集中生产,在开采近距离煤层群时,采用联合布置或分组联合布置方式,将几个煤层划为一组,在最下面的煤层或底板岩石中布置共用的上山和平巷,一般开三条上山,各煤层和底板巷道用石门和溜煤眼相联系,建立一个统一的生产系统。
图1中,采区开采m1、m2两个煤层,沿倾斜划分为3个区段。阶段运输大巷 1和回风大巷2共用的采区输送机上山3和轨道上山4,它们都布置在m2煤层中。各煤层区段平巷实行双巷布置。m1层的区段运输平巷5,以溜煤眼6与采区输送机上山连通;m1层的区段轨道平巷7,以区段石门8和轨道上山相接。m2层的区段运输平巷9和m2层区段轨道平巷10,均直接与采区输送机上山和轨道上山分别相连。
m1层工作面采出的煤,经该层区段运输平巷运到区段溜煤眼,再通过采区输送机上山运至采区煤仓11;最后,在大巷车场12装车外运。m2层的煤,经该层区段运输平巷,直接运到采区输送机上山。
采区轨道上山兼作进风;输送机上山兼作回风。新鲜风流经区段石门和m1层区段平巷进入m1层工作面;废风经m1层轨道回风平巷和回风石门,流至阶段回风大巷。m2层工作面的新鲜风流,从轨道上山经m2层区段平巷进入;废风由轨道回风平巷,排至回风大巷。
采区联合布置减少了大巷的数目和巷道工程量,充分发挥运输设备的能力,节省设备和管线器材,提高生产能力。在中国煤矿中已广泛采用。
近水平煤层盘区巷道布置 近水平煤层的采区通常称盘区。盘区巷道布置的方式是:将井田划分为若干双翼布置的盘区,盘区走向长度约1200~2000m,倾斜长度2000~3000m。例如某矿的可采煤层为m1和m2,其倾角为4°~6°。在煤层内开掘运输大巷,自运输大巷开掘盘区回风上山和盘区材料上山;在盘区中央从运输大巷开掘盘区石门,从盘区石门开掘溜煤眼和进风行人斜巷。从盘区回风上山开掘盘区?胤缦锏馈T谂糖诓捎煤笸耸匠け诠ぷ髅?,一般长100~150m。工作面采下的煤经溜煤眼,在盘区石门内装车,经运输大巷外运。
这种准备方式简化了运输系统,提高了运输能力,改善了上山运输和巷道维护条件,有利于实行均衡生产;但石门开掘工程量大,费用高,工期长,一般在煤层多,储量大的大型矿井中使用。
倾斜长壁采煤法准备方式 在煤层或底板岩石中布置运输大巷和回风大巷;倾斜方向在沿煤层内布置运输斜巷和回风斜巷,至采区边界后,掘开切割眼,形成回采工作面,沿煤层倾斜方向采用仰斜或俯斜方式采煤。
房柱采煤法准备方式 美国开采近水平薄及中厚煤层时,采用房柱采煤法。在主平巷两侧成直角开掘3~4条平巷,分别用作运输、行人、进风、回风。在平巷两侧垂直布置煤房。
急倾斜煤层采区巷道布置 中国开采急倾斜煤层群的矿井,一般采用多水平、集中运输大巷、采区石门开拓方式。采区石门的间距约400~600m,随着生产集中化的要求,采区石门间距有加大的趋势。采区石门贯穿煤层后,就可布置采区巷道,有两种布置方式。
单层布置 煤层间距较大时,各煤层分别布置采区巷道,形成各自独立的运输、通风系统。采区三条上山眼多布置在煤层中,分别用作运煤、运料和行人、通风。采区煤仓穿过底板与采区石门连通,煤在石门中装车外运。
联合布置 煤层间距较小时,把几层煤联合起来布置采区巷道。一般几层煤共用一套上山眼和平巷。这些共用巷道布置在煤组最下面的煤层中,用区段石门将上部煤层联系起来,形成统一的采区生产系统(图2)。
选择布置原则 选择单层布置还是联合布置,主要取决于煤层间距,具体数值根据各矿区的地质和技术条件确定。中国淮南矿区区段石门长度在40m以内时,采用共用上山联合布置。间距更小的近距离煤层,可采用共用上山和共用平巷联合布置。
参考书目
中国矿业学院等院校编:《采煤学》,第一版,煤炭工业出版社,北京,1979。
缓倾斜煤层和倾斜煤层采区上山准备方式 矿井开掘出水平大巷后,一般沿煤层走向,每隔800~2500m开掘上山(见矿山井巷),将煤层划分采区,分区开采。典型的布置方式有两种:
采区单层布置 在开采薄及中厚煤层时,将每个煤层单独开采,在煤层或底板岩石内布置一个完整的生产系统。
在采区内通常开掘两条上山:①输送机上山,用于运煤、行人、回风;②轨道上山,用于运料、下放矸石、进风。必要时另开一条运人和通风上山。从上山向两侧开掘区段平巷,在区段平巷末端开掘切割眼,形成回采工作面(见煤回采工艺)。采出的煤经区段运输平巷及输送机上山,运至采区煤仓装车外运。新鲜空气由运输大巷经轨道上山和区段巷道进入工作面;回风由采区回风巷流出。
采区联合布置 60年代以来,随着机械化水平的提高,为减少巷道工程量和实行集中生产,在开采近距离煤层群时,采用联合布置或分组联合布置方式,将几个煤层划为一组,在最下面的煤层或底板岩石中布置共用的上山和平巷,一般开三条上山,各煤层和底板巷道用石门和溜煤眼相联系,建立一个统一的生产系统。
图1中,采区开采m1、m2两个煤层,沿倾斜划分为3个区段。阶段运输大巷 1和回风大巷2共用的采区输送机上山3和轨道上山4,它们都布置在m2煤层中。各煤层区段平巷实行双巷布置。m1层的区段运输平巷5,以溜煤眼6与采区输送机上山连通;m1层的区段轨道平巷7,以区段石门8和轨道上山相接。m2层的区段运输平巷9和m2层区段轨道平巷10,均直接与采区输送机上山和轨道上山分别相连。
m1层工作面采出的煤,经该层区段运输平巷运到区段溜煤眼,再通过采区输送机上山运至采区煤仓11;最后,在大巷车场12装车外运。m2层的煤,经该层区段运输平巷,直接运到采区输送机上山。
采区轨道上山兼作进风;输送机上山兼作回风。新鲜风流经区段石门和m1层区段平巷进入m1层工作面;废风经m1层轨道回风平巷和回风石门,流至阶段回风大巷。m2层工作面的新鲜风流,从轨道上山经m2层区段平巷进入;废风由轨道回风平巷,排至回风大巷。
采区联合布置减少了大巷的数目和巷道工程量,充分发挥运输设备的能力,节省设备和管线器材,提高生产能力。在中国煤矿中已广泛采用。
近水平煤层盘区巷道布置 近水平煤层的采区通常称盘区。盘区巷道布置的方式是:将井田划分为若干双翼布置的盘区,盘区走向长度约1200~2000m,倾斜长度2000~3000m。例如某矿的可采煤层为m1和m2,其倾角为4°~6°。在煤层内开掘运输大巷,自运输大巷开掘盘区回风上山和盘区材料上山;在盘区中央从运输大巷开掘盘区石门,从盘区石门开掘溜煤眼和进风行人斜巷。从盘区回风上山开掘盘区?胤缦锏馈T谂糖诓捎煤笸耸匠け诠ぷ髅?,一般长100~150m。工作面采下的煤经溜煤眼,在盘区石门内装车,经运输大巷外运。
这种准备方式简化了运输系统,提高了运输能力,改善了上山运输和巷道维护条件,有利于实行均衡生产;但石门开掘工程量大,费用高,工期长,一般在煤层多,储量大的大型矿井中使用。
倾斜长壁采煤法准备方式 在煤层或底板岩石中布置运输大巷和回风大巷;倾斜方向在沿煤层内布置运输斜巷和回风斜巷,至采区边界后,掘开切割眼,形成回采工作面,沿煤层倾斜方向采用仰斜或俯斜方式采煤。
房柱采煤法准备方式 美国开采近水平薄及中厚煤层时,采用房柱采煤法。在主平巷两侧成直角开掘3~4条平巷,分别用作运输、行人、进风、回风。在平巷两侧垂直布置煤房。
急倾斜煤层采区巷道布置 中国开采急倾斜煤层群的矿井,一般采用多水平、集中运输大巷、采区石门开拓方式。采区石门的间距约400~600m,随着生产集中化的要求,采区石门间距有加大的趋势。采区石门贯穿煤层后,就可布置采区巷道,有两种布置方式。
单层布置 煤层间距较大时,各煤层分别布置采区巷道,形成各自独立的运输、通风系统。采区三条上山眼多布置在煤层中,分别用作运煤、运料和行人、通风。采区煤仓穿过底板与采区石门连通,煤在石门中装车外运。
联合布置 煤层间距较小时,把几层煤联合起来布置采区巷道。一般几层煤共用一套上山眼和平巷。这些共用巷道布置在煤组最下面的煤层中,用区段石门将上部煤层联系起来,形成统一的采区生产系统(图2)。
选择布置原则 选择单层布置还是联合布置,主要取决于煤层间距,具体数值根据各矿区的地质和技术条件确定。中国淮南矿区区段石门长度在40m以内时,采用共用上山联合布置。间距更小的近距离煤层,可采用共用上山和共用平巷联合布置。
参考书目
中国矿业学院等院校编:《采煤学》,第一版,煤炭工业出版社,北京,1979。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条