1) Penicillin G acylase
青霉素G酰化酶
1.
Purification and Crystalline of Penicillin G Acylase;
大肠杆菌108(pPAHD1)青霉素G酰化酶的纯化与结晶
2.
Site-directed mutagenesis of B.megaterium penicillin G acylase and its kinetics;
巨大芽孢杆菌青霉素G酰化酶的定点突变及其动力学性质研究
3.
Site-directed Mutagenesis at Ser177 of Penicillin G Acylase Gene;
青霉素G酰化酶基因Ser177的定点突变
2) penicillin acylase
青霉素G酰化酶
1.
The immobilized penicillin acylase from E.
采用肽键法将青霉素G酰化酶固定在功能化的聚丙烯酸甲酯上得固定化酶 ,其最适pH为8。
3) penicillin-G amidase
青霉素酰化酶G
1.
Aim To demonstrate the specific killing of folate receptor (FR)-positive tumor cells can be achieved by folate-targeted penicillin-G amidase (PGA) combined with its prodrug substrate N-(phenylacetyl) doxorubicin (DOXP).
目的考察叶酸靶向的青霉素酰化酶G(PGA)联合前药N-苯乙酰化阿霉素(DOXP)对叶酸受体阳性肿瘤细胞的活性。
4) immobilized penicillin G acylase
固定化青霉素G酰化酶
1.
Localization of activity of immobilized penicillin G acylase was studied by X ray microanalysis.
利用X射线微区分析 ,对固定化青霉素G酰化酶的活性进行了定位分析。
2.
The experiment is performed for the X-ray microanalysis of immobilized penicillin G acylase.
为了能对固定化青霉素G酰化酶进行X射线微区分析 ,筛选了能捕捉酶活的合适的底物与捕捉剂的体系 ,青霉素G钠作为底物 ,FeCl3 作为捕捉剂 ,底物经固定化青霉素G酰化酶水解产生苯乙酸 ,后者与捕捉剂反应生成沉淀 ,可以确定固定化青霉素G酰化酶的催化活性部位 ;还对捕捉剂与底物、固定化青霉素G酰化酶与载体以及载体与底物之间的相互作用进行了研究 ,找到了可用于对固定化青霉素G酰化酶活性进行X射线微区定位的捕捉剂。
3.
The active site of immobilized penicillin G acylase can be determined according to the precipitant produced in the reaction between phenylacetic acid and capture reagent.
利用苯乙酸与捕捉剂反应生成的沉淀 ,确定固定化青霉素G酰化酶的催化活性部位 。
5) Penicillin-G-amidases
青霉素G酰胺酶
6) folate-conjugated penicillin G amidase
叶酸-青霉素G酰化酶(F-PGA)
补充资料:青霉素
沿革 1928年,英国细菌学家A.弗莱明在实验室发现了青霉素及其抑菌作用,1938~1941年H.W.F.弗洛里和E.B.钱恩经分离制得青霉素,并发现它对许多严重的全身性细菌感染有良好治疗效果,是一个高效低毒抗生素。青霉素的出现,在医学上开创了抗生素药物治疗的历史,对治疗人畜炎症起到十分重要的作用。青霉素生产初期,在克氏培养瓶中进行表面培养,浓度仅能达到每毫升8~12单位。这样,几百个瓶子生产的量,只够一个病人使用。直到1943年,才试验成功在发酵罐里,采用通气搅拌的深层培养法生产青霉素。
目前,生产青霉素的发酵罐体积已扩大到百吨以上,发酵液浓度已达每毫升 60000单位左右。但随着青霉素的大量使用,细菌对青霉素产生的耐药现象日趋严重,尤其是金黄色葡萄球菌耐药菌株的蔓延已成临床上一个严重问题。其次,青霉素还存在抗菌谱不够广,易引起过敏反应等问题,因而其应用受到限制。1959年,美国J.C.希亨和K.R.亨利-朗根从青霉素发酵液中分离出青霉素母核6APA并成功地合成了第一个半合成青霉素──苯氧乙基青霉素。从此开始了对青霉素结构改造的研究,用微生物合成与化学合成相结合的方法,生产很多各具特点的新型半合成青霉素,使青霉素类得到更广泛的应用。
生产方法 天然青霉素与半合成青霉素生产方法完全不同。
天然青霉素 青霉素 G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养 7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐(见彩图)已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液(见彩图),转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素 G钾盐通过离子交换树脂(钠型)而制得。
半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。
6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或 V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素 G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。
应用 由于青霉素对溶血性链球菌、肺炎双球菌、葡萄球菌、淋球菌、脑膜炎双球菌、破伤风杆菌和白喉杆菌等均有作用,常用于由上述细菌感染的蜂窝组织炎、肺炎、脑膜炎和脓肿等疾病的治疗。最近,半合成青霉素的品种发展很快,扩大了抗菌谱,对革兰氏阴性杆菌如大肠杆菌、绿脓杆菌等也都有良好的抑制作用。
目前,生产青霉素的发酵罐体积已扩大到百吨以上,发酵液浓度已达每毫升 60000单位左右。但随着青霉素的大量使用,细菌对青霉素产生的耐药现象日趋严重,尤其是金黄色葡萄球菌耐药菌株的蔓延已成临床上一个严重问题。其次,青霉素还存在抗菌谱不够广,易引起过敏反应等问题,因而其应用受到限制。1959年,美国J.C.希亨和K.R.亨利-朗根从青霉素发酵液中分离出青霉素母核6APA并成功地合成了第一个半合成青霉素──苯氧乙基青霉素。从此开始了对青霉素结构改造的研究,用微生物合成与化学合成相结合的方法,生产很多各具特点的新型半合成青霉素,使青霉素类得到更广泛的应用。
生产方法 天然青霉素与半合成青霉素生产方法完全不同。
天然青霉素 青霉素 G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养 7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐(见彩图)已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液(见彩图),转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素 G钾盐通过离子交换树脂(钠型)而制得。
半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。
6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或 V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素 G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。
应用 由于青霉素对溶血性链球菌、肺炎双球菌、葡萄球菌、淋球菌、脑膜炎双球菌、破伤风杆菌和白喉杆菌等均有作用,常用于由上述细菌感染的蜂窝组织炎、肺炎、脑膜炎和脓肿等疾病的治疗。最近,半合成青霉素的品种发展很快,扩大了抗菌谱,对革兰氏阴性杆菌如大肠杆菌、绿脓杆菌等也都有良好的抑制作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条