1.
The relationship of this geometry to Riemann's varieties was not clear.
这种几何和Riemann几何的关系是不清楚的。
2.
Hypergeometric Series Method for Riemann-Zeta Function and Combinatorial Identities;
Riemann-Zeta函数的超几何级数方法和组合恒等式
3.
Geometrical Properties of Compact Riemannian Symmetric Spaces and Their Applications;
紧致Riemann对称空间的整体几何性质及其应用
4.
Global Classical Solutions to the Dissipative Hyperbolic Geometric Flow on Riemann Surfaces
Riemann曲面上耗散双曲几何流的整体经典解
5.
Gauss assigned to Riemann the subject of the foundations of geometry as the one on which he should deliver his qualifying lecture.
Gauss给Riemann指定把几何基础作为他应该发表的就职演说的题目。
6.
It was this concept that Riemann generalized, thereby opening up new vistas in non-Euclidean geometry.
这个概念嗣后为Riemann所推广,从而在非欧几里德几何学中开辟了新前景。
7.
On the Extension of Riemann-Lebesgue Theorem;
Riemann-Lebesgue定理的推广
8.
Some Extensions of Riemann-Lebesgue Lemma;
Riemann-Lebesgue引理的推广
9.
A Generalization on Riemann s Theorem of Directly-Riemann Integral;
关于Directly-Riemann积分的Riemann定理的推广
10.
the proof of a theorem,ie in geometry
(几何)定理的证明.
11.
geometric effect
几何效应 -食双星
12.
topological differential geometry
拓扑微分几何(学)
13.
synthetic(projective) geometry
综合(射影)几何(学)
14.
plane Euclidean geometry
平面欧几里得几何学
15.
n-dimensional Euclidean geometry
n维欧几里得几何学
16.
noneuclidean geometry
非欧几里得几何(学)
17.
the postulates of Euclideangeometry
欧几里得几何学的公设.
18.
we will learn analytic geometry after studying solid geometry.
我们刚学完立体几何就要学解析几何。