说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 自共轭域
1.
The Symplectic Geometry Characterization of Seif-Adjoint Domains of Symmetric Differential Operators in Direct Sum Spaces;
直和空间上对称微分算子自共轭域的辛几何刻划
2.
The Symplectic Geometry Description of the Self-Adjoint Domains of Differential Operators on Infinite Interval;
无穷区间上奇型微分算子自共轭域的辛几何刻画
3.
Symplectic Geometry Characterization of Self-Adjoint Domains for Symmetric Differential Operators in Direct Sum Spaces(Ⅱ)
直和空间上对称微分算子自共轭域的辛几何刻画(Ⅱ)
4.
Characterization of Domains of Self-Adjoint Ordinary Differential Operators and Spectral Analysis
微分算子的自共轭域和谱分析——微分算子研究在内蒙古大学三十年
5.
Perselfconjugate Solutions to the Inverse Problem of a System of Linear Left Equations overDivision Rings;
斜域上左线性方程组反问题的广自共轭解
6.
A partition that is its own conjugate is ealled self-conjugate.
一个分析如与其自身共轭,称为自共轭。
7.
Similar delocalization is found in other conjugated systems.
在其他共轭体系中,也发现类似的离域。
8.
Beamspace conjugate MUSIC algorithm for non-circular signals
基于非圆信号的波束域共轭MUSIC方法
9.
Conjugate Gradient Algorithm Based on Directions of Negative Curvature in Complex Domain
基于负曲率方向的复数域共轭梯度法
10.
Doundary Value Problems,Periodic Solutions and Homoclinics for Nonself-adjoint and Self-adjoint Difference Equations;
非自共轭与自共轭差分方程的边值问题、周期解及同宿轨
11.
conjugated molecule and unconjugated molecule
共轭分子和非共轭分子
12.
The Stability of the Solution of Self-adjoint Integral Equations
自共轭积分方程的解对边界的稳定性
13.
A computational method of determinant of self-conjugate quaternion matrice;
自共轭四元数矩阵行列式的计算方法
14.
Oscillation of a Self-Conjugate Nonlinear Difference Equation;
一类自共轭非线性差分方程的振动性
15.
Some properties on self-conjugate matrix and inverse self-conjugate matrixabout secondary diagonal;
关于次(反)自共轭矩阵的几个性质
16.
Extended Unitary Diagonalizable of Self-conjugate Matrix in Quaternion Field;
四元数体上自共轭矩阵广义酉对角化
17.
On the Self-Adjointness of Product of Two Odd-Order Differential Operators
两个奇数阶微分算子乘积的自共轭性
18.
Nonlinear optical phase conjugation technology can be used in adaptive optics and optical information processing.
非线性光学相位共轭技术可用于很多光学领域。