说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 中值定理的新证明
1.
A New Proof of Cauchy Mean-value Theorem and Two Applications of Mean-value Theorem;
柯西中值定理的新证明及中值定理的两个应用
2.
A New Method of Proving Lagrange Value Theorem;
Lagrange中值定理的一个新证明
3.
Another Proof of Lagrange Mean Value Theorem;
Lagrange中值定理的一个证明
4.
This paper gives the new method to prove the Cauchy Mean Value Theorem ,which also may be deduced from the Lagrange Mean Value Theorem.
给出柯西中值定理的一个新的证法, 说明柯西中值定理也可由拉格朗日中值定理导出.
5.
The Proof of the Generalized Cauchy Mean-value Theorem with Method of Interpolation
利用插值法证明推广的柯西中值定理
6.
In this paper, applying local mean value theorem, we prove some theorem of complex analysis.
运用局部复中值定理,我们重新证明了复分析中的几个定理.
7.
Shallowly Discusses in the Differential Theorem of Mean Proof the Auxiliary Function;
浅谈微分中值定理证明中的辅助函数
8.
The construction of additive functions to testify differential mean value theorem
微分中值定理证明中辅助函数的构造
9.
On further probing and proving the differential mean-value theorem;
对微分中值定理的进一步探讨及证明
10.
A Research on Mean Value Theorem Proof;
Lagrange中值定理证明方法的研究
11.
The Proof about the First Integral Mean Value Theorem;
关于积分第一中值定理的证明和推广
12.
Some New Proofs of the Lagrange Mean Value Theorem;
对Lagrange中值定理证明方法的讨论
13.
Analytical Proof of the Lagrange Intermediate Value Theorem of Calculus;
Lagrange微分中值定理的分析证明法
14.
Demonstrate Lagrange Mean Value Theorem by Coordinate Revolution;
利用坐标的旋转变换证明Lagrange中值定理
15.
Several Exploration Methods to Prove the Cauchy Mean Theorem
Cauchy微分中值定理的多种探究式证明法
16.
The Application of Initial Integral Method to Proving Differential Mean-value Theorem;
首次积分法在微分中值定理证明中的应用
17.
Differential Intermediate Value Theorem Proving Problem in the Auxiliary Function Constructor
微分中值定理证明题中辅助函数的构造方法
18.
Application of Parameter-Variation Method in Proving Two Differential Mean Value Theorems
参数变异法在两个微分中值定理证明中的应用