1.
Design and Implementation of Time-Space Uncoupled Interest Management in Complex System Distributed Simulation Platforms;
复杂系统分布仿真平台中时空非耦合兴趣管理的研究与实现
2.
Synchronization of Nonlinear-coupled Spatiotemporal Chaotic Systems
非线性耦合时空混沌系统的同步研究
3.
The synchronization of spatiotemporal chaos of all-to-all network using nonlinear coupling
非线性耦合完全网络的时空混沌同步
4.
Nonlinear Feedback Control of Spatiotemporal Chaos in Coupled Map Lattices
耦合映像格子中时空混沌的非线性反馈控制
5.
Anti-synchronization of nonlinear-coupled spatiotemporal chaotic systems
非线性耦合时空混沌系统的反同步研究
6.
Spatiotemporal Optical Soliton Solutions of One Coupled System in Nonlocal Nonlinear Media
非局域非线性介质中一个耦合系统的时空光孤子解
7.
Synchronization of Spatiotemporal Chaos in Regular Coupled and Random Coupled Dynamic System;
规则耦合与随机耦合系统的时空混沌同步研究
8.
The Transformation Formula of Coupling and Non-coupling Representation Concerning J=J_1+J_2;
J=J_1+J_2时耦合与非耦合表象的变换通式
9.
Nonlinear Three-Dimensional Coupling Vibration of Wind-Vehicle-Bridge System;
风—车—桥系统非线性空间耦合振动研究
10.
Energy Splitting of Coupling Harmonic Oscillator in Non-commutative Space
非对易空间中耦合谐振子的能级分裂
11.
THE TIME-SPACE-COUPLING LAWS IN TOURISM DEVELOPMENT AND MANAGEMENT;
旅游开发与管理的时空耦合规律初探
12.
Generalized Theory of Incoherently Coupled Spatial Soliton Families
非相干耦合空间孤子族的一般理论(英文)
13.
Spiral Waves and Spatiotemporal Chaos Control in Excitable Media by Using Coupling Method;
可激发介质螺旋波和时空混沌耦合控制研究
14.
Spatiotemporal chaotic stream cipher system based on the coupled drivers model
基于双耦合驱动模型的时空混沌流密码系统
15.
Linear Control of Spatiotemporal Chaos in Coupled Map Lattices
耦合映像格子中时空混沌的线性反馈控制
16.
Godunov-type Solutions with Second Order in Time and Space for Fluid Structure Interaction Model of Liquid-filled Pipeline
充液管道流固耦合模型的时空二阶Godunov型解
17.
Time and space multiscale numerical method by coupling discrete element method and finite element method
离散元与有限元耦合的时空多尺度计算方法
18.
In the paper, We have obtain the existence and the theorems for approximations couple fixed point of semi compact nonexpansive mappings in complete metric space.
在完备度量空间获得了半紧非扩张映象的近似耦合不动点的存在性和耦合不动点的逼近定理.