说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 算子级数乘数收敛
1.
Orlicz-Pettis Theorem and Operator Series Multiplier Convergent;
Orlicz-Pettis定理与算子级数乘数收敛
2.
Invariant Property of c_0(X)-Evaluation Convergence of Operator Series;
算子级数的c_0(X)-赋值收敛的不变性质
3.
Invariant Property of c(X)、l~p(X)-Evaluation Convergence of Operator Series;
算子级数的c(X)、l~p(X)(1<p<∞)-赋值收敛的不变性质
4.
Cauchy condition for convergence of a series
柯西级数收敛条件。
5.
conditionally convergent double series
条件收敛的二重级数
6.
On Rate of Convergence of Baskakov-Bézier Operators for Locally Bounded Functions
局部有界函数的Baskakov-Bézier算子的收敛阶
7.
Mean convergence of derivative approximation by quasi-Hermite interpolation operators
拟Hermite插值算子导数逼近的平均收敛性
8.
The Relation Between the Rate of Series Convergence & the Appreciation Convergence of Positive Term Series;
级数的收敛速度与正项级数判敛法的关系
9.
Employing Laplace Transform to Discuss the Absolute Convergence and the Uniform Convergence of Dirichlet Series;
利用Laplace变换讨论Dirichlet级数的绝对收敛与一致收敛
10.
Estimate on rate of convergence of Szasz-Bézier Operaters for functions of bounded variation;
有界变差函数的Szasz-Bézier算子收敛阶的估计
11.
Real-coded quantum-inspired evolutionary algorithm and its convergence
一种实数编码量子进化算法及其收敛性
12.
The Estimation of Consistent Convergence about a Kind of Function Series;
关于一类函数级数一致收敛性的判别
13.
Convergence Uniform on the Fuzzy Interval Value Functions Series;
Fuzzy区间值函数项级数及其一致收敛性
14.
Property 2 If 、 converge to and respectively, then also converges, and .
性质2如果级数、分别收敛于和,则级数也收敛,且其和为。
15.
The Uniform Convergence of Fuzzy-valued Sequence and a Series Whose Terms are Fuzzy-valued Function;
Fuzzy值向量函数列及函数项级数的一致收敛性
16.
A Sufficient Condition about Convergence Uniform of Function and a Sufficient and Necessary Condition about Convergence of Positive Series;
函数列一致收敛的一个充分条件和正项级数收敛的一个充要条件
17.
Proof of the Function Seies Convergence Uniform Theorem and Necessary and Sufficient Condition in General Integral Convergent;
函数项级数一致收敛定理的证明和广义积分收敛的充要条件
18.
THE EQUICONVERGENCE THEOREM FOR BESSEL SERIES ON THE UNIT CIRCLE
圆周上的贝塞尔级数的等价收敛定理