说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 消耗预测模型
1.
Energy Consumption Prediction Modeling of Mineral Separation Plant Based on Multi-Input Layer Wavelet Neural Network
基于多输入层小波神经网络的选矿厂能源消耗预测模型
2.
Forecasting Method of Spare Parts Consumption Based on ARIMA Model
基于ARIMA模型的备件消耗预测方法
3.
Using Input-Out Model Forecasting Resources Consumption Elements of Enterprise;
运用投入产出模型预测企业资源消耗要素
4.
Application of Cloud Models in Prediction of Training Ammunition Expense
云模型在训练弹药消耗预测中的应用研究
5.
Study on the Combined Forecasting Method in the Petrol-oil and Lubricants Based on Analytic Hierarchy Process
基于层次分析法的军队油料消耗组合预测模型
6.
Study on Consumptive Law of Consumptive Equipment Based on Combination Forecast Model
基于组合预测模型的常耗车辆器材消耗规律研究
7.
Research on Generalized Weighted Functional Mean Combining Forecasting Model of Air Material Consumption Based on Grey System and Neural Network;
基于灰色系统与神经网络的航材消耗广义加权函数平均组合预测模型研究
8.
model of input-output in labor consumptio
劳动消耗投入产出模型
9.
Research on Heat Transference Model of Multi-span Plastic Greenhouse and Energy Consumption Forecast;
连栋塑料温室传热模型与能耗预测研究
10.
The Prediction of the Energy Consumption in China Achieved through Neural Network;
一种基于神经网络模型的中国能耗预测
11.
Microwave Loss Modeling of Nanocomposites Embedded SiC Nanoparticales and Performance Forecasting
SiC纳米复合材料微波损耗模型及性能预测
12.
Research and application of the energy consumption forecast based on gray model of equal dimensional innovation
基于灰色等维新息模型的能耗预测研究及应用
13.
The Application of ARIMA Model in the Prediction of the Energy Consumption of Our Country;
ARIMA模型在我国能源消费预测中的应用
14.
Study on the application of ARIMA Model in forecasting China’s coal consumption;
ARIMA模型在煤炭消费预测中的应用分析
15.
STUDY ON CHANGE TREND AND PREDICTION MODELS OF FOODSTUFF AND COOKING OIL CONSUMPTIONS IN SHANGHAI;
上海粮油消费量变化趋势及预测模型
16.
L.R-L.P Model for Forecasting Tourist Consumption Sum of Regional Citizen;
预测地区公民旅游消费额的L.R—L.P模型
17.
Predication of Gansu' Energy Demand Based on ARIMA Model
基于ARIMA模型的甘肃省能源消费预测
18.
The results of prediction agree well with the measurement.
该模型的路径损耗预测结果与实际的测量结果比较,符合较好。