1.
Research on Performance of Frost Formation Process on the Coil of Cold Wall in Vacuum Freeze-Drying Machine;
冻干机冷阱盘管表面结霜特性的研究
2.
Experimental Study on Performance of Frost on Cold-trap Used by Vacuum Freeze-daying Machine
真空冷冻干燥机中冷阱结霜特性的研究
3.
Numerical Simulation of Air-flow Organization in the Chilling Chamber of Freeze Drier and its Reaserch for Optimization of Energy Conservation
食品冻干机冷阱室内气流组织数值模拟及节能优化研究
4.
VRV Air Conditioner:Energy Saving's Cure-all or Trap?
变频冷气:空调节能之万能丹或陷阱?
5.
Double-Layer Optical-Trap Arrays for Trapping Cold Atoms or Molecules
实现冷原子或冷分子囚禁的双层光阱列阵
6.
Modeling vapor-liquid equilibrium of refrigerants using an equation of state for square-well chain fluid with variable range
变阱宽方阱链流体状态方程模拟制冷剂的汽液平衡
7.
Evaporative cooling can work only in a trap, and magnetic traps are the ones that work best with this cooling technique.
蒸发冷却法只有在阱里行得通,而这种冷却技术配合磁阱来做效果最好。
8.
TRANSIENT BEHAVIOR OF THE LOSS OF HEAT SINK WITHOUT SCRAM AND INHERENT SAFETY OF SODIUM COOLED FAST REACTOR
钠冷快堆无停堆保护失热阱固有安全特性
9.
Experimental Research on Single ~(40)Ca~+ Trapping and Laser Cooling in a Paul Trap;
Paul阱中单个~(40)Ca~+囚禁和激光冷却的实验研究
10.
Dynamics of an Ultracold Dipolar Atom Gas in a Double Well
双势阱中超冷极性原子气体的动力学研究
11.
A controllable electrostatic double-well trap for cold polar molecules
一种实现冷分子囚禁的可控制静电双阱方案
12.
A Novel Scheme of the Controllable Eight-well Optical Trap for Cold Atoms or Molecules and its Optical Lattice
囚禁冷原子或冷分子的可控制光学八阱及其晶格新方案
13.
Furthermore, the stronger the trap( the more tightly the atoms are squeezed into a small volume), the faster and more efficient the cooling.
此外,阱越深(能让原子云挤在一个小空间里)冷却起来就越快越有效。
14.
INTERNALLY-THROTTLING LIQUID NITROGEN DEWAR OF COOLING FINGER TYPE AND ITS APPLICATION IN FLUORESCENCE STUDY OF MULTIPLE QUANTUM WELLS
内节流式冷指型液氮杜瓦瓶及其在多量子阱荧光研究中的应用
15.
Preparation of Quantum Optical States and Properties of Quantum States of Ultra-cold Atoms in Optical Traps;
光场量子态制备与光阱下的超冷原子量子态特性研究
16.
The Cesium Double MOT and Cold Atom Transfer for Cavity QED;
用于腔量子电动力学实验的铯原子双磁光阱及其冷原子输运研究
17.
Gravito-optical Surface Trap with Semi-Gaussian Beam and Its Intensity Gradient Cooling;
采用半高斯光束的重力光学表面势阱及其强度梯度冷却
18.
Hotter atoms must be expelled from the trap, thereby removing energy; such cooling must continue until a condensate forms.
较热的原子必须被赶出阱外,才能移除能量;这类冷却过程必须持续到凝聚产生。