1.
The index weight of combining subject and object, the fuzzy method of synthetical evaluation are used to model the comprehensive evaluation of the level of green logistics for road transportation enterprises.
其次,通过构造最优矩阵和最劣矩阵,并运用模糊多层次综合评价法进行了综合评价。
2.
Optimal Closed-Form Solution to Array Error Matrix Based on Eigenvector
基于特征向量的阵列误差矩阵最优闭式解
3.
The Determination of Feedback Matrix and Weighting Matrix for Optimum Control According to Stability Requirements
按稳定性要求确定最优控制中的反馈矩阵和权矩阵
4.
The Properties of Portfolio′s Covariance Matrix and The Optimal Portfolio Selection
投资组合协方差矩阵的性质与最优组合的选择
5.
The Best Invariance Estimitors of the Parameters for the Linear Model Under the Matrix Loss Function
矩阵损失下线性模型中参数的最优同变估计
6.
Solving Large Scale Matrix Eigenvalue Problem with Optimization Methods;
用最优化方法求解大型矩阵特征值问题
7.
Approach of Optimal Diagnosis Tree Generation Based on Dependence Matrix
基于故障相关矩阵的最优测试序列生成方法
8.
Wavelets Bases from Optimal Biorthogonal Wavelet Transform Matrix
由最优双正交小波变换矩阵决定的小波基
9.
The extension of Optimally Weighted Ls and Matrix Schwarz inequality;
最优加权最小二乘估计解与矩阵希瓦兹不等式的推广
10.
Research on Diagonally Dominant Matrix、Block Diagonally Dominant Matrix and the Relevant Special Matrices;
对角占优矩阵、块对角占优矩阵及其相关特殊矩阵类的一些研究
11.
Optimal Feature Subset Selection for Multi-class Problem Based on the Fuzzy Extension Matrix;
基于模糊扩张矩阵多类问题的最优特征子集抽取
12.
OPTIMAL ESTIMATIONS IN A GENERAL GROWTH CURVE MODEL BY TRACE MEANS;
矩阵迹意义下的一般增长曲线模型参数的最优估计
13.
An Optimal Approach to Markowitz s Portfolio Investment Model with Singular Covariance Matrices;
奇异方差矩阵的Markowitz’s证券组合投资决策模型的最优化解法
14.
Analysis of Algorithm and Time Complexity on the Optimum Order of Matrix Chain Multiplication;
矩阵链乘积最优计算次序问题的算法及其复杂性分析
15.
Estimates of the Bounds of Spectral Radius and the Smallest Singular Value of LDD-matrix
局部双严格对角占优矩阵的谱半径上下界与最小奇异值估计
16.
Chain Randomized Carried Modulation Strategy for Four-leg Matrix Converter Based on Optimal Markov
基于最优马尔可夫链的双级四脚矩阵变换器随机载波调制策略
17.
As for the size of the rectangular array , under the same condi- tions, the resolution power of a 128X 128 array is better than that of a 64 X 64 array.
讨论; 就矩阵大小而言,128×128矩阵采集分辨能力优于64×64矩阵。
18.
Criteria for Generalized Diagonally Dominant Matrices and Nonsingular M-matrix;
广义对角占优矩阵与非奇M-矩阵的判定