说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 最优线性分派
1.
A Linear Dispatch Optimization Model for Choosing Naval Ships Attack Enemies Traffic Scheme;
最优线性分派模型的水面舰艇破交方案优选
2.
Distributed construction of optimal linear network coding
最优线性网络编码的分布式构造方法
3.
Optimal Linear Detection Algorithm of MIMO with Distributed Transmit Antennas
分布式发射天线MIMO信号的最优线性检测
4.
Optimal Control and Stability of Nonlinear Piecewise Smooth Dynamical Systems;
非线性分段光滑动力系统的最优控制及稳定性
5.
Optimality Conditions for a Class of Nonconvex Nonlinear Fractional Programming
一类非凸非线性分式规划的最优性条件
6.
A Deterministic Global Optimization Method for Solving Linear Fractional Programming
线性分式规划全局最优解的确定性方法
7.
t linear unbiased estimator
最优线性无偏估算子
8.
linearized stochastic optimal control
线性化随机最优控制
9.
A Class of Nonlinear Impulsive Integral Differential Equations and Optimal Control;
一类非线性脉冲积微分方程及其最优控制
10.
Second order Nonlinear Impulsive Integro-differential Equations of Mixed Type and Optimal Controls
二阶非线性混合型脉冲积微分方程和最优控制
11.
ASYMPTOTICALLY OPTIMAL EMPIRICAL BAYES ESTIMATION OF PARAMETER FOR LINEAR EXPONENTIAL DISTRIBUTION
线性指数分布参数的渐近最优的经验Bayes估计
12.
Controllability, Stability and Its Optimal Control of a Class Nonlinear Distributed Parameter System;
一类非线性分布参数系统的可控性、稳定性及其最优控制
13.
Finally, optimality necessary and sufficient conditions for nonlinear convex semidefinite programming are proved.
并给出了非线性半定规划的最优性必要和充分条件.
14.
OPTIMALITY CONDITIONS AND DUALITY FOR A CLASS OF NONLINEAR MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS;
IT一类非线性多目标分式规划的最优性条件和对偶(英文)
15.
Online Bandwidth Allocation on Two Links with the Biggest Size of Requests Known in Advance;
预先知道最大请求的两条线路带宽分派问题
16.
Linear regression equation is analyzed by using indirect error-smoothing, and nonlinear regression equation is optimally selected by using the method of comparison of mid-point of curve.
用间接观测平差法分析线性回归方程,用曲线中点比较法选择最优非线性回归方程。
17.
Stochastic Hybrid Systems: Stabilization and Optimal Control;
非线性随机系统的稳定性与最优控制
18.
The Optimization Solution of The Linear Programming of Elasticity Constraints;
弹性约束下的线性规划之最优化方法