说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> Cauchy微分中值定理
1.
An Extending of Cauchy s Mean-Value Theorem on Functions of Several Variables;
Cauchy微分中值定理在多元函数中的推广
2.
Several Exploration Methods to Prove the Cauchy Mean Theorem
Cauchy微分中值定理的多种探究式证明法
3.
The asymptotic behaviour of intermediate point in higher orders Cuachy of motion interval mean value theorem for differential;
动态区间上高阶Cauchy微分中值定理“中间点”的渐进性
4.
Asymptotic Properties of Intermediate Point for Cauchy Mean Value Theorem of Integral Type
积分型Cauchy中值定理中间点的渐近性
5.
On Inverse Problem of Higher Order Cauchy s Mean Value Theorem and It s Approachability;
高阶Cauchy中值定理的逆命题及其渐近性
6.
A Discussion on the Asymptotic Characteristic of Mean Mid-value in Cauchy Theorem;
关于Cauchy中值定理“中值点”的渐进性的讨论
7.
On the Asymptotic Approximation and Asymptotic Rate of Convergence of the Mean Value of Cauchy Theorem;
关于Cauchy中值定理中值的渐近性与收敛速度
8.
The mid-value theorems is the basic theorems in the calculus.
微分中值定理是微分学中的基本定理。
9.
The Analytic Behaviour of Intermediat Point ξ in the Mean Value Theorem for Differentials;
微分中值定理中“中值点”ξ的分析性质
10.
The boundary value of vector-valued Cauchy type inegrals in locally convex space;
局部凸空间中Cauchy型积分的边值问题
11.
Discussion on Differential Mean Value Theorem "mean value point";
关于微分中值定理“中值点”的讨论
12.
Sub-differential of Convex Functions and the Converse of the Mean Value Theorem
凸函数的次微分与微分中值定理的逆定理
13.
The Fixed Point Theorem and the Iterative Approximation of Some Class Quasi-Cauchy Integral Operator in Real Clifford Analysis
Clifford分析中一类拟Cauchy型积分算子的不动点定理及迭代构造
14.
STRONG LAW OF THE MEAN FOR MEASURE-UNITYOF THE LAWS OF THE MEAN FOR CALCULUS;
测度强中值定理──微积分中值定理的统一
15.
Analytical Proof of the Lagrange Intermediate Value Theorem of Calculus;
Lagrange微分中值定理的分析证明法
16.
Shallowly Discusses in the Differential Theorem of Mean Proof the Auxiliary Function;
浅谈微分中值定理证明中的辅助函数
17.
About the Gradual Approximation of the Middle Point of the Differential Median Theorem;
关于微分中值定理“中间点”的渐近性
18.
An Extension of Differential Mid- Value Theory in Concave (Convex) Functions;
微分中值定理在凹(凸)函数中的推广