1.
The article edits the programme(“ceigvv.tru”)which solves the complex(or real) eigenvalues and eigenvectors of the general real Matrix.
应用上述数学方法,编制了实一般矩阵的复特征值和复特征向量计算机程序。
2.
The General Form of A djoint of kth degree of N-th-order s Square-Matrix;
n阶方阵的k次伴随矩阵的一般形式
3.
General solutions of matrix equation A_1XB_1+A_2X~TB_2=E
求解矩阵方程A_1XB_1+A_2X~TB_2=E的一般解
4.
To give a general method on how to find the similitude transformation matrix-matrix synthetic division.
给出了求相似变换矩阵的一种一般方法?矩阵的综合除法。
5.
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
6.
A Sufficient and Necessary Condition for the Power of 3-order Real Matrix Converging 0-matrix;
实三阶矩阵幂收敛于零矩阵的一个充要条件
7.
The Estimates of Solution of Discrete Lyapunov Equation and the Trace Bound for the Product of Real Square Matrices;
离散Lyapunov方程的解和一般矩阵积的迹界的估计
8.
The Calculation, Simplification and Application of the Transitive Closure of the General Fuzzy Matrix;
一般模糊矩阵传递闭包的计算、简化与应用
9.
A new representation for the Drazin inverses of 2×2 block matrices
关于2×2分块矩阵的Drazin逆的一般表达式(英文)
10.
A CRITICAL CONDITION FOR THE MATRIX TO BE AN H-MATRICES AND THE INFINITE NORM ESTIMATION FOR THE INVERSEOF A CLASS OF REAL MATRIX
非奇异H矩阵的一个判定条件及一类实矩阵逆的无穷范数估计
11.
A real symmetric matrix A can be expressed as ??.
一个实对称矩阵A能被表示为??。
12.
A Concise Expression for Power of Defective Matrix in Real Number Field;
实数域上亏损矩阵幂的一个简洁表示
13.
An Easy and Convenient Computational Method and the Properties of Full Symmetric Real Matrices;
全对称实矩阵的一个简便算法及性质
14.
Inverse Matrix of Triple-diaganal Symmetry Toeplitz Matrix;
Toeplitz矩阵逆阵的一种解法
15.
Some Common Properties Among Invertible Matrix,Adjoint Matrix and Inverse Matrix
可逆矩阵及其伴随矩阵、逆矩阵的一些共同特性
16.
Q: WARNING: THE SYSTEM MATRIX HAS1 NEGATIVE EIGENVALUES.
一般在什么情况下会发生系统矩阵出现负特征值?
17.
Mention what other generalizations of the random matrix problem are interesting but not discussed.
提及其它有趣的但没被提到的随机矩阵的一般化问题。
18.
Identify the core random matrix question that needs to be solved to tackle the generalization.
识别随机矩阵核心问题,解决它们以处理一般性问题。