1.
A Method for Fuzzy Multi-attribute Decision Making with Preference Information in the Form of Fuzzy Reciprocal Judgement Matrix
偏好信息为模糊互反判断矩阵的模糊多属性决策法
2.
A new ranking method for complementary judgment matrix with triangular fuzzy number;
三角模糊数互补判断矩阵排序新方法
3.
An New Ranking Method of Fuzzy Complementary Judgement Matrix;
模糊互补判断矩阵排序的一种新方法
4.
Three Reciprocal Judgement Matrices-Based Methods for Priorities of Complementary Judgement Matrices;
3种基于互反判断矩阵的互补判断矩阵排序法
5.
Research on the Methods for Ranking Alternatives Based on the Fuzzy Complementary Judgement Matrix;
单一准则下模糊互补判断矩阵的排序方法研究
6.
A Common Framework for Deriving Preference Values Ranking of Fuzzy Complementary Judgment Matrix;
模糊互补判断矩阵排序的一个通用框架
7.
The Conditions of Strong Rank Preservation for Adding New Elements in Fuzzy Complementary Judgement Matrix;
模糊互补判断矩阵导入新元素的强保序性条件
8.
A Method for Improving the Complementary and Consistency of Fuzzy Judgment Matrix;
一种模糊判断矩阵的互补一致性修正方法
9.
A Priority Method for Triangular Fuzzy Number Complementary Judgement Matrix;
基于FOWA算子的三角模糊数互补判断矩阵排序法
10.
Weight vector of interval fuzzy complementary judgment-matrix
基于区间模糊互补判断矩阵的排序权重研究
11.
Research on consistency test and modification approach of fuzzy judgement matrix
模糊互补判断矩阵一致性检验和改进方法研究
12.
A method for adjusting the consistency of the fuzzy reciprocal judgment matrix
一种模糊互补判断矩阵的一致性调整方法
13.
The Conditions of Strong Rank Preservation for Adding New Elements in FAHP
模糊互补判断矩阵中导入新元素的保序性条件
14.
Additive Consistency and Prioritization for Triangular Fuzzy Number Complementary Judgment Matrix
三角模糊数互补判断矩阵的加性一致性及排序
15.
Reciprocal judgment matrix and fuzzy complementary judgment matrix can tansform each other.
互反型判断矩阵与互补型判断矩阵可以相互转换.
16.
Researches on the Consistency of Fuzzy Recip-Rocal Judgment Matrix and Methods Aggregating Individual Preferences into a Group Preference;
模糊互补判断矩阵的一致性及群体集结方法研究
17.
The Research on Some Theory for FAHP Based on Fuzzy Reciprocal Judgment Matrix;
基于模糊互补判断矩阵的FAHP的若干理论问题研究
18.
Multi-Attribute Decision Making Based on Consistency of Fuzzy Complementary Judgement Matrix;
基于模糊互补判断矩阵一致性的多属性决策分析