1.
Some Discussion about the Perfect Partition
关于正整数n的完备分拆的一些探讨
2.
The Judgment on the Quality of the Odd Number or Even Number for the Sum of the Power of Any(m(m≥2)) Successive Integer;
任意m(m≥2)个连续正整数n次幂代数和的奇偶性判定法
3.
X~n+Y~n=Z~nn≥3(No Integer Solution);
X~n+Y~n=Z~n n≥3时无整数解
4.
Number for Positive Integral Solution of the Diophantine Equation mx+2y+z=n(m≥3,n≥m+3);
不定方程mx+2y+z=n(m≥3,n≥m+3)的正整数解数
5.
The quantity n is an integer, not a continuous variable.
量n是个整数,而不是一个连续的变量。
6.
Implement Solving Factorial of Big Integer N with C++;
基于C++的求大整数N的阶乘的实现
7.
Positive Integer Solutions of The Equation(ax~m+1)/(ax+1)=y~n;
方程(ax~m+1)/(ax+1)=y~n的正整数解
8.
Positive Integer Solutions of the Equation (ax~m-1)/(ax-1)=y~n;
方程(αx~m-1)/(αx-1)=y~n的正整数解
9.
The positive integer solution to the equation φ (kn) = φ ((k+1) n), (k = 1, 2, ...);
方程φ(kn)=φ((k+1)n),(k=1,2,…)的正整数解
10.
An equation involving the functions Z(n) and D(n) and its all positive integer solutions
一个包含Z(n)和D(n)函数的方程及其它的正整数解
11.
We wish to make triples (x, y, z)from the integers{1, 2, ..., (n+1)}.
我们要从整数集{1、2、…(n+1)}中取三数组(x,y,z)。
12.
Competition number of complete pentapartite graphs K_(n,n,n,n,n) where n≡1,5(mod6)
完全五部图K_(n,n,n,n,n)(n≡1,5(mod6))的竞争数
13.
Aneuploid describes chromosome numbers which are not multiples of the haploid number (n).
非整倍体所描述是单倍体数目(n)并非成倍增加。
14.
Three Methods to Derive the Formula for the Sum of the K power of Positive N Term Integer;
导出正整数前n项k方和公式的三种方法
15.
The Answer of the Matrix Equation X~n=B~m and the Discussion of the Matrix Irintegral Number Power;
矩阵方程X~n=B~m的解及矩阵非整数次幂探讨
16.
The competition numbers of complete tetrapartite graphs K_(n,n,n,n) where n is even
完全四部图K_(n,n,n,n)(n为偶数)的竞赛数
17.
The competition numbers of complete tetrapartite graphs K_(n,n,n,n) where n is odd
完全四部图K_(n,n,n,n)(n为奇数)的竞赛数
18.
integrated software
n.1. 整合性软件