1.
The Study of Geometry of Rectangular Block Triangular Matrices;
除环上长方分块三角矩阵几何的一些研究
2.
M/H_k/1 Queuing System with Balking and State-dependent Service--the Matrix-geometric Solution
带有止步和状态相依的M/H_k/1排队系统——矩阵几何解法
3.
The element siiffness matrix and the geometric stiffness matrix etc. are explicitly presented.
单元的刚度矩阵和几何刚度矩阵全部显式给出。
4.
Geometric Mean of Khatri-Rao and Tracy-Singh Products of Matrix;
矩阵的Khatri-Rao与Tracy-Singh乘积的几何平均
5.
Research of construction algorithm of finite geometry LDPC codes based on matrix decomposition
基于矩阵分解的有限几何LDPC码的研究
6.
Stiffness matrices of bernoulli beam for plane geometrically nonlinear analysis
伯努力梁平面几何非线性分析的刚度矩阵
7.
The scalar is then called the eigenvalue associated with the eigenvector.
参见矩阵的特征值与特征向量的几何意义。
8.
Root Subspace Theory of Geometry as well as Practical Calculus for Transformation Matrix
根子空间的几何理论与演化矩阵的实际计算
9.
On the Geometrical Significance and Teaching of Basic Elementary Matrix;
基本初等矩阵的几何意义及其在教学中的运用
10.
Property of Jacobi Matrix and Theorem of Geometric Integral Transformation;
Jacobi矩阵的性质与几何体上积分变换定理
11.
Geometric Conditions under Which 2×2 and 3×3 Inverting Matrices Can Be Translated into Diagonal Forms
二、三阶可逆矩阵可以相似对角化的几何条件
12.
The thin wall beam considering shear dint hysteresis effecting geometry matrix deduce
薄壁箱梁考虑剪力滞效应几何刚度矩阵的推导
13.
The stiffness matrix and geometric stiffness matrix of rectangular tube-in-tube element of which the cross-section has bisymmetric axes are developed.
导出了截面含双对称轴的矩形筒中筒单元刚度矩阵和单元几何刚度矩阵。
14.
Conclusions of matrix order by using lump matrix;
利用分块矩阵讨论矩阵秩的几个结论
15.
SOME INEQUALITIES FOR THE TRACE OF HERMITE MATRIX
Hermite矩阵迹的几个不等式
16.
Local deviations depend strongly on the local geometry of the solid matrix.
局部偏离严格地依赖于固体矩阵的局部几何形状。
17.
The Study of Geometric Nonlinear Element Stiffness Matrix and the Analysis of Deforming Behavior of Portal Frame with Tapered Members;
几何非线性单元刚度矩阵研究以及变截面门式刚架变形性能分析
18.
Setting Research into the Matrix and Geometrical Transformation as a Selected Topic under New Standard of Mathematics Curriculum in Senior Middle School;
新课程标准下高中开设“矩阵与几何变换”选修专题的研究