1.
Some properties on self-conjugate matrix and inverse self-conjugate matrixabout secondary diagonal;
关于次(反)自共轭矩阵的几个性质
2.
Extended Unitary Diagonalizable of Self-conjugate Matrix in Quaternion Field;
四元数体上自共轭矩阵广义酉对角化
3.
Variational Characterizations of Eigenvalues of Self-conjugate Quaternion Matrix and Its Application
四元数自共轭矩阵特征值的变分特征及其应用
4.
A computational method of determinant of self-conjugate quaternion matrice;
自共轭四元数矩阵行列式的计算方法
5.
Additive Preservers of Determinant on Self-Conjugate Quaternion Matrix Spaces;
自共轭四元数矩阵空间的保行列式加法映射
6.
Minor Self-conjugate and Skewpositiove Semidefinite Solutions to a Matrix Equation over Skew Fields;
体上一矩阵方程的次自共轭及斜亚半正定解
7.
Determinantal Inequality of Sum of Positire Semidefinite Self-conjugate Quaternion Matrices;
半正定自共轭四元数矩阵之和的行列式不等式
8.
The Characteristic of Self-conjugate Quaternionic Matrices and Two Necessary and Sufficient Conditions Concerning the Inequalities of the Traces of Quaternionic Matrices;
自共轭四元数矩阵的特征及迹不等式的两个充要条件
9.
The Inverse Inequalities of H older and Minkowski for Self-Conjugate Semidefinite Quaternion Matrices;
四元数自共轭半正定矩阵的反向Hlder不等式和Minkowski不等式
10.
Associated with the notion of the transposed matrix is its complex conjugatx known to physicists as the adjoint matric.
跟转置矩阵记号相联系的是它的复共轭矩阵,物理学家称之为伴矩阵。
11.
According to the filter matrix particularity, the filter equation was solved by using conjugate gradient method.
并根据滤波矩阵的特殊性,?用共轭梯度法求解滤波方程。
12.
However convergence of CGM will be slow a high-order matrix of theequations.
但是,共轭梯度法求解这类高阶矩阵向量方程时,其收敛缓慢。
13.
Direction-of-Arrival Estimation Method of Coherent Signals Based on Data Matrix Reconstruction for Conjugate ESPRIT(C-SPRIT)
基于数据矩阵重构的相干源波达方向共轭ESPRIT(C-SPRIT)估计方法
14.
Detection of the Number of Signals Using the Transformed Rotational Matrix and General Conjugate Residue Method
基于旋转变换矩阵和广义共轭剩余法的信号源数检测方法
15.
A partition that is its own conjugate is ealled self-conjugate.
一个分析如与其自身共轭,称为自共轭。
16.
Each observable is represented by a densely defined Hermitian( or self-adjoint) linear operator acting on the state space.
每个可见由详细定义的厄密共轭(者同一伴随矩阵)用于状态矢量空间线性操作者来表现。
17.
Steihaug has shown that an approximate solution of the trust region problem may be found by the PCG method.
共轭梯度法由于不需要矩阵计算和存贮,成了解大型问题的首选方法。
18.
Some Common Properties Among Invertible Matrix,Adjoint Matrix and Inverse Matrix
可逆矩阵及其伴随矩阵、逆矩阵的一些共同特性