1.
A Simple Formula of Calculating the Step & Type of Integral Function;
整函数的级和型计算的一个简便公式
2.
ORDER AND TYPE OF ENTIRE FUNCTION OF FINITE ORDER REPRESENTED BY LAPLACE-STIELTJES TRANSFORM
Laplace-Stieltjes变换所定义的有限级整函数的级与型
3.
The Growth of Entire Function Represented by B-valued Dirichlet Series
B-值Dirichlet级数表示的整函数的增长性
4.
The type of proximate order of an entire function defined by Laplace-Stieltjes transform
Laplace-Stieltjes变换所定义的整函数的(R)级准确级的型
5.
The Growth of Entire Function Represented by General Random Dirichlet Series;
一般随机Dirichlet级数表示的整函数的增长性
6.
The Argument Distribution of The Multiple Value and the Derived Functions of Integral Functions with Iterated Order;
迭代级整函数的结合于导数与重值的辐角分布
7.
By using the concept of iterated order, we investigate the argument distribution of the multiple value and the derived functions of integral functions with irerated order.
利用整函数的迭代级的概念,研究了迭代级整函数的结合于导数与重值的辐角分布。
8.
TYPE OF PRECISE ORDER OF AN ENTIRE FUNCTION DEFINED BY LAPLACE-STIELTJES TRANSFORM
Laplace-Stieltjes变换所表示的整函数的精确级的型
9.
Fixed Point and Transcendental Number of Linear Differential Equatio n Solution when Finite Set Overreaches the Whole Function Factor;
有限级超越整函数系数线性微分方程解的不动点与超级
10.
Coefficients of some classes of star like and convex functions of order ρ
某些ρ级星形函数和凸形函数的系数
11.
Julia s Direction for Compound Function of Meromorphic Function and Entire Function;
关于亚纯函数与整函数的复合函数的JULIA方向
12.
On the zero and hype-order of solutions of certain non-homogeneous differential equations with entire coefficients;
关于某类整函数系数高阶齐次线性微分方程解的级和零点
13.
The BR Direction on the Small Functions of the Meromorphic Function of Zero Orders;
零级亚纯函数关于小函数的BR方向
14.
On the T-direction of Meromorphic Functions with Infinite Order and Its Derivative
无穷级亚纯函数及其导函数的T方向
15.
Some Results on Distribution of Entire and Meromorphic Functions;
整函数和亚纯函数值分布的若干结果
16.
Uniqueness of Entire Function Sharing a Set with Its Dirivative
整函数与其导函数分担值集的唯一性
17.
On the log~+M(r,f) of Entire Function
关于整函数的log~+M(r,f)
18.
Complex Analytic Function Utilized in Sum Function Evaluation of Trigonometric Progression;
利用复变解析函数求三角级数的和函数