1.
It has developed from two sources: algebraic geometry and algebraic member theory.
它由两个方面发展而来,代数几何和代数数论。
2.
Applications of Representation Theory of Algebras to Hopf Algebras;
代数表示论在Hopf代数中的应用
3.
The Frattini Theory of Restricted Lie Color Algebra;
限制李Color代数的Frattini理论
4.
ANALYSIS OF MATHEMATICAL METHODOLOGY IN THE CONTENTS OF THE COURSE "HIGHER ALGEBRA;
《高等代数》课程内容的数学方法论分析
5.
P-solvable Restricted Lie Colour Algebras and the Basic Theory of Associative Lie Colour Algebras;
P-可解限制李colour代数与结合李colour代数基本理论
6.
An Approach to Introducing the Nonlinear Algebraic Equation System into Advanced Algebra Curriculum;
非线性代数方程组理论引入高等代数课程研究
7.
A Problem about the Intersection of Orthogonal and Symplectic Algebras;
关于正交代数和辛代数交集的问题的讨论
8.
K-Theory for Extensions of Purely Infinite Simple C~*-algebrasⅡ
纯无限单C~*-代数的扩张代数的K-理论Ⅱ
9.
Study on the Development of Mathematics in Tang Dynasty and the Inspiration to Us in Modern Society;
论唐代数学的发展及其对现代的启示
10.
Modernity of Chinese Minorities′ Literature;
略论中国现代少数民族文学的现代性
11.
Hoehere Algebra: die Matrixtheorie und die Polynomtheorie.
高等代数:矩阵理论和多项式理论。
12.
Several Methods of Proving Fundamental Theorem of Algebra by Using Theory of Complex Functions;
复变函数理论证明代数学基本定理的几种方法
13.
Study on Some Algebra Questions of Quaternion Matrix
四元数体上一些矩阵代数问题的理论研究
14.
Using "Iterative Loop and If Function" to Calculate Rectification Column Theoretical Plate Numbers
用迭代循环和条件函数求解精馏塔理论塔板数
15.
Lie algebra structure on Virasoro algebra
Virasoro代数的Hom-李代数结构
16.
Explore Relations between the Higher Algebra and the Mathematics of Middle School by Mathematical Methodology;
从数学方法论看高等代数与中学数学的多种联系
17.
Of, relating to, or designating algebra.
代数的代数的,关于代数的或表示代数的
18.
Classifications of A(?)-Algebras and Extension Algebras of AT-Algebras;
A(?)-代数和AT-代数扩张代数的分类