说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 三项式
1.
Consisting of three terms.
三项式的包含有三项的
2.
An algebraic expression consisting of three terms connected by plus or minus signs.
三项式一种包含有由加号或减号相连接的三项的代数表达式
3.
In general,the interaction of the main object can be described by the bilateral pattern and trilateral pattern.
大体上,主体客体相互作用可以通过二项式(双向式)或三项式模式来描述。
4.
Three Kinds of Symmetric Polynomial Expressed by the Elementary Symmetric Polynomial;
初等对称多项式的多项式表出的三类对称多项式
5.
The trigonometric terms should be changed by the substitution of the equations involving the double angles.
用倍角公式代换三角函数项。
6.
BTTB Preconditioner for Block Toeplitz Systems Based on Trigonometric Polynomial Approximation;
基于三角多项式近似的BTTB预处理矩阵
7.
On Approximation of Modifying S.N.Bernstein Trigonometric Polyromials;
二元S.N.Bernstein型三角插值多项式的逼近
8.
Elevation Algorithm for a Class of Trigonometric Polynomial Spline Curves
一类三角多项式样条曲线的升阶算法
9.
A Class of Trigonometric Polynomial Curves on Five-Point Piecewise Scheme
基于五点分段的一类三角多项式曲线
10.
Cubic Non-uniform Trigonometric Polynomial Curves with Multiple Shape Parameters;
多形状参数的三次非均匀三角多项式曲线
11.
A class of modifiable C~2 continuous cubic trigonometric polynomial curve
可调控C~2连续三次三角多项式样条曲线
12.
Bifurcation of Limit Cycles for a Class of Polynomial System with Quasi Quadratic Terms and Quasi Cubic Terms
一类含拟二次项和拟三次项的多项式系统的极限环
13.
On Some Identities of Chebyshev Multinomial and Trigonometric Function;
关于契贝谢夫多项式及三角函数的一些恒等式
14.
A Comparative Study On the Three Conditions of Abundant Reasons of the Heturidya in Tibetan Area and the Three Forms of Hypothetic Judgments of Formal Logic;
藏传因明充足理由之三项条件与形式逻辑假言判断三形式之比较
15.
/****"..." BUTTON IS UNDER A SECTION IN A THREE COLUMN AND TABBED WIZARD*********/
/****“...”按钮位于选项卡式(三列)向导中的一个节下*********/
16.
/****THIS IS THE DEFAULT OBJECT DROP DOWN IN 3 COLUMN AND NON-TABBED WIZARD****/
/****这是非选项卡式(三列)向导中的默认对象下拉框****/
17.
Any one of the forms that a syllogism can take, depending on the position of the middle term.
格依靠中项的位置的三段论有的任一种形式
18.
Its form up to a tenth degree polynomial is shown below.
下面写出一直到十次多项式的帕斯卡三角形。