1.
A Hardware Algorithm for Euclidean Distance Transform Based on Binary Images
基于二值图像的欧几里德距离转换算法硬件实现
2.
The global features and local features will be recognized and sorted by weighting Euclidean distance and the minimum distance, respectively.
通过加权欧几里德距离和最小距离分别对全局特征和局部特征进行分类识别。
3.
2) In this part, a centerline extraction based on 3D Euclidean distance transform is presented.
2)提出了一种全自动的基于三维欧几里德距离变换的中轴提取算法。
4.
Finally the algorithm discovers all time -series patterns by computing Euclidean distance between any two subsequences in each box.
最后通过计算每个盒子中任意两个子序列间的欧几里德距离来发现所有的模式。
5.
Connections Between Euclidian Distance Matrix and Positive Semidefinite Matrix
欧几里得距离矩阵与半正定矩阵的关系
6.
Euclid was not always right.
欧几里德不一定全对。
7.
The non-Euclidena geometries were in effect subordinated to Euclidean geometry.
非欧几里德几何实际上是从属于欧几里德几何的。
8.
Movement Axiom of Euclid Geometric System and High School Maths Education
欧几里德几何体系中运动与中学教学
9.
It has been proved that the nature of independence exists in the axiomatic system of Group、Euclidean space、distance space and topological space.
本文证明了:群、欧几里得空间、距离空间和拓扑空间的公理系统的独立性。
10.
Some of these are mistakes made by Euclid that can be remedied.
有些错误是欧几里德搞错的,可以纠正。
11.
A Note on the Complexity of Euclidean Algorithm
关于欧几里德算法复杂性的一点注记
12.
The Comparison between Euclid s Mathematics Thoughts and Archimedes s;
欧几里得与阿基米德数学思想之比较
13.
He did not grant independent existence to the non-Euclidean geometries.
他不承认非欧几里德几何的独立存在性。
14.
The common conclusion was the uniqueness and necessity of Euclidean geometry.
欧几里德几何的唯一性与必要性已被公认。
15.
The Independence of Several Axioms in Euclidean System
欧几里德公理系统中几个公理的独立性
16.
The main result is:if such a group contains the orientation-preserving Euclidean group in R~2,then it is a subgroup of the orientation-preserving Euclidean goup in R~3.
主要结果是:若这种群包含二维保向欧几里德群,则必为三维保向欧几里德群的子群.
17.
The axioms adopted by Euelid mere supposed to be self-evident truths.
欧几里德用的公理都应看作是不证自明的真理。
18.
Kolmogorov:Euclid in the Complexity Research
柯尔莫哥洛夫:“复杂性研究中的欧几里德”