1.
The Existence and Property Result for Optimization Problem of Set-Valued Maps;
集值映射优化问题解的存在性及解集性质
2.
ε-weak Efficient Solutions to the Problems about the Vector Optimization of Set-valued Maps;
集值映射向量优化问题的ε-弱有效解
3.
Optimality Conditions for a kind of Set-Valued Vector Optimization of Maps
一类集值映射向量优化问题的最优性条件
4.
(Directional) Derivatives of Three Classes of Set-Valued Maps and Their Applications to Optimization;
三类集值映射的(方向)导数及在优化中的应用
5.
The Properties of Weak Effective Solution of Vector Optimization Problems of Set Valued Mapping
集值映射向量优化问题弱有效解的性质
6.
Up Semi-continuous of the Ideal Solutions of Vector Optimization Problems with Set-valued Maps
集值映射向量优化问题理想解的上半连续性
7.
Contingent Derivatives of Set-valued Maps with Applications to Parameterized Vector Optimization;
集值映射的相依导数及其在参数向量最优化中的应用
8.
Henig Proper Efficiency in Vector Optimization with Nearly Subconvexlike Set-valued Maps;
几乎次类凸集值映射向量优化问题的Henig真有效性
9.
ε-Properly Efficient Solutions of Vector Optimization Problems with Set-Valued Maps in Linear Spaces
线性空间中集值映射向量优化问题的ε-真有效解
10.
The Optimality Conditons, Saddle Points and Duality for the Nearly Subconvexlike Vector Optimization of Set-Maps in Ordered Linear Space;
序线性空间中近次似凸集值映射向量优化的最优性条件、鞍点和对偶理论
11.
THE CONTINUITY OFε-OPTIMAL SOLUTION SET SET-VALUED MAPPING IN NONLINEAR PARAMETRIC PROGRAMMING PROBLEM
非线性参数规划问题ε-最优解集集值映射的连续性
12.
The Existence Theorem of the Cone Subdifferential of Limit Mapping of Set-valued Mapping Sequence;
集值映射序列的极限映射的锥次微分的存在性
13.
Generic Stability of Loose Nash Equilibrium Points for Set - valued Maps;
集值映射的Loose Nash平衡点集的稳定性
14.
Continuity and Connectivity of Almost Connectivity Set-Valued Map
几乎连通集值映射的连通性与连续性
15.
Existence of Essential Components of Some Set-valued Mappings;
一类集值映射本质连通区的存在问题
16.
The Equivalence of Subconvexlike Set-Valued Map and Nearly Subconvexlike Set-Valued Map;
次似凸、近次似凸集值映射的等价性
17.
THE MOREAU-ROCKAFELLAR TYPE THEOREM FOR SET-VALUED FUNCTION;
关于集值映射的Moreau-Rockaffellar型定理
18.
Fixed Point Theorems for Point-to-set Mappings in Linear Topological Space;
线性拓扑空间集值映射的不动点定理