1.
A class of ecological matrices P has been dealt with such that the real partsof all eigenvalues of matices QP are negative,where Q is an arbitrary positivediagonal matrix.
本文研究一类生态矩阵P 使得QP 的特征值对于任何正对角矩阵Q 均具有负的实部.
2.
The square matrix is called a diagonal matrix.
该方矩阵称为对角矩阵。
3.
Inverse eigenvalue problem for real symmetric five-diagonal positive definite matrix;
实对称正定五对角矩阵逆特征值问题
4.
Orthogonal Diagonal Decomposition and Moore-Penrose Inverses of o-Symmetrix Matrix
o-对称矩阵的正交对角分解及Moore-Penrose逆
5.
transform a matrix to a diagonal matrix.
把一个对角矩阵转化成对角矩阵。
6.
The research for Simultaneous Diagonal matrix of Matrices
矩阵同时相似于对角矩阵问题的研究
7.
Simultaneous diagonalization of two quaternion normal matrices
2个四元数正规矩阵的同时对角化问题
8.
Symmetric Positive Definite Matrices and the Determining Criterions for Non-singular GM-matrices
对称正定矩阵与非奇异GM-矩阵的判定
9.
a diagonal matrix in which all of the diagonal elements are equal.
对角元素相等的斜矩阵。
10.
On Hadamard Product of Tridingonal Inverse M-Matrices
三对角逆M-矩阵的Hadamard积
11.
Research on Diagonally Dominant Matrix、Block Diagonally Dominant Matrix and the Relevant Special Matrices;
对角占优矩阵、块对角占优矩阵及其相关特殊矩阵类的一些研究
12.
The Methods of Calculating Power of Diagonalizable Matix;
相似于对角矩阵的方阵高次幂的求法
13.
Criteria for Generalized Diagonally Dominant Matrices and Nonsingular M-matrix;
广义对角占优矩阵与非奇M-矩阵的判定
14.
α-subdiagonally Dominant Matrices and Criteria of Nonsingular Sub-H-matrices
α-次对角占优矩阵与非奇异次H矩阵的判定
15.
On Diagonal-Schur Complements for Doubly Diagonally Dominant Matrices;
双对角占优矩阵的对角Schur余
16.
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
17.
We call a matrix the generalized cyclic matrix if it can be written the product of a nonsingular diagonal matrix and a cyclic matrix.
可表为非奇异对角矩阵和循环矩阵乘积的矩阵,我们称其为广义循环矩阵。
18.
This can be extended to nxn tridiagonal matrix with L, U bidiagonal.
把它推广到nxn三对角线矩阵使具有两对角线的矩阵L、U。