1.
Mean Value and Convergence on Some Arithmetical Functions;
一些数论函数的敛散性及其均值估计
2.
The Convergence and Divergence Problems of Expansion Based on Eigenfunctions of Hamilton Operators;
基于Hamilton算子特征函数系展开的敛散性
3.
Two Methods of Distinguishing Convergence and Divergence of Positive Terms Series;
关于正项级数敛散性的两种判别方法
4.
The Convergence-Divergence and Estimation Formula of Generalized p-Series;
广义P-级数的敛散性及其估值公式
5.
A Brief Proof for Convergence and Divergence of Harmonic progression and P progression
调和级数与P级数敛散性的简单证法
6.
Some Annotations on Course of Proving Disappearance and Divergenceof an Alternate Progression by Leibnize Principle;
使用莱布尼兹审敛法证明交错级数敛散性的几种注记
7.
A Proof of the Guess about the Convergence or Divergence of a Series and the Relevant Theorems;
一个级数敛散性猜想的证明及相关定理
8.
The Empirical Analysis on the Convergence and Divergence of County Economy of Yibin City;
宜宾市区县经济增长敛散性的实证分析
9.
Teaching Method of Series of Constant Terms and Their Convergence and Divergence;
关于数项级数及其敛散性概念的教学方式
10.
ASTRINGENCY AND DIVERGENCY ANALYSES OF REGIONAL ECONOMIC DEVELOPMENT AND ITS INDICATION FUNCTIONS IN WESTERN CHINA;
西部12省区经济发展的敛散性及指示功能研究
11.
Conclusions on the series’convergence property with the changing of the sequence of item;
与级数项重组后敛散性有关的几个结论
12.
Order of Infinitesimal and Its Application to Criterion of Convergence and Divergence;
无穷小的阶数及其在敛散性判定中的应用
13.
Several Equivalent Forms of Raabe Distinction of the Convergence and Divergence of Positive Term Series;
正项级数敛散性Raabe判别法的几种等价形式
14.
On the Convergence and Devergence of Progression sum from n=2 to ∞[1-α/(π[n])]~n;
关于级数sum from n=2 to ∞[1-α/(π(n))]~n的敛散性
15.
Relation and Application of Convergence and Divergence Between Nonnegative Infinite Integral and Series
非负无穷积分与级数之间敛散性的关系与应用
16.
The Criterion on Convergence and Diverge of A Kind of Alternative Series
关于一类交错级数敛散性的一种判别法
17.
The Popularization and Application of Proportional Expression Discriminance of the Criteria for the Convergence and Divergence in Positive Term Series
正项级数敛散性比式判别法的推广及应用
18.
Convergence and divergence of infinite series depend upon this concept.
无穷级数的收敛性与发散性与此概念有关。