1) hyperelastic-rod wave equation
超弹性杆波动方程
1.
Traveling wave solution to generalized hyperelastic-rod wave equation
广义超弹性杆波动方程的行波解
2) generalized hyperlastic-rod
广义超弹性杆波动方程
1.
In this paper, we study the existence of the global solution, the Blow-up and the traveling wave solution for the generalized D-P type equation and the generalized hyperlastic-rod wave equation.
本文主要研究D-P类方程和广义超弹性杆波动方程解的局部存在性,整体存在性,Blow-up,以及方程的行波解的存在性等。
3) Viscoelastic wave equation
粘弹性波动方程
1.
3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations;
三维F-X域粘弹性波动方程保幅偏移方法
4) elastic wave equation
弹性波动方程
1.
Finite element parallel algorithm for numerical solution of elastic wave equation;
弹性波动方程数值解的有限元并行算法
2.
Based on elastic wave equation, a high-order finite-difference scheme was derived in staggered grid space, and the relation between absorbing boundary conditions and numerical dispersion was also studied to establish the mathematical model of coal multi-component seismic exploration.
从弹性波动方程出发,在交错网格空间中采用高阶有限差分技术导出了应力-速度弹性波动方程正演的差分格式,研究了其吸收边界条件与数值频散关系,建立了煤田多波勘探的数学模型。
3.
In this paper, the medium parameters of the elastic wave equation in inhomogeneous medium are rewritten by introducing the referential Yariables and the perturbational variables, and the wave squation whose sources are the medium paremeter perturbatioal term in homogeneous medium is obtained.
本文通过对非均匀介质弹性波动方程中的介质参数引入背景场量和摄动量,得到以摄动项为次生源的均匀介质中的波动方程,利用Green函数理论化微分方程为积分方程;然后把均匀介质中的位移波场做为第一次迭代结果,代入积分方程进行位移波场的求解;当扰动量达50%时,此方法仍然有效,分析数值结果,从而对一般非均匀介质中的波场性质有了一个定性了解,结果与一般非均匀介质中的声波局部理论基本一致。
5) full elastic wave equation
全弹性波动方程
6) generalized hyperelastic-rod equation
广义超弹性杆方程
1.
We will study the condition of blow-up for the generalized hyperelastic-rod equation.
本文主要研究广义超弹性杆方程解的Cauchy问题及解的爆破条件,解在有限时间内爆破的条件取决于:最小的初始速度的梯度的变化范围以及初始值和广义函数G(μ)的最大变分。
2.
The problem of the global exponential stabilization by the boundary feedback for the generalized hyperelastic-rod equation on the interval is considered.
主要研究广义超弹性杆方程的初边值问题,讨论方程在区间[0,1],及边界条件u(0,t)=ux(1,t)=uxx(0,t)=0,-u(1,t)uxx(1,t)=φ(u(1,t))下,整体解的存在性,H1-整体指数稳定性估计及H2-整体渐进稳定性估计。
补充资料:波动方程
见双曲型偏微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条